Skip to main content
Log in

Design and development of microbioreactors for long-term cell culture in controlled oxygen microenvironments

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The ability to control the oxygen level to which cells are exposed in tissue culture experiments is crucial for many applications. Here, we design, develop and test a microbioreactor (MBR) for long-term cell culture studies with the capability to accurately control and continuously monitor the dissolved oxygen (DO) level in the cell microenvironment. In addition, the DO level can be controlled independently from other cues, such as the viscous shear-stress acting on the cells. We first analyze the transport of oxygen in the proposed device and determine the materials and dimensions that are compatible with uniform oxygen tension and low shear-stress at the cell level. The device is also designed to culture a statistically significant number of cells. We use fully transparent materials and the overall design of the device is compatible with live-cell imaging. The proposed system includes real-time read-out of actual DO levels, is simple to fabricate at low cost, and can be easily expanded to control the concentration of other microenvironmental solutes. We performed control experiments in the absence of cells to demonstrate that the MBR can be used to accurately modulate DO levels ranging from atmospheric level to 1%, both under no flow and perfusion conditions. We also demonstrate cancer cell attachment and viability within the MBR. The proposed MBR offers the unprecedented capability to perform on-line measurement and analysis of DO levels in the microenvironment of adherent cultures and to correlate them with various cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • H.E. Abaci, R. Truitt, E. Luong, G. Drazer, S. Gerecht, Am. J. Physiol. Cell Physiol. 298, C1527–C1537 (2010)

    Article  Google Scholar 

  • H.E. Abaci, R. Truitt, S. Tan, S. Gerecht, Am. J. Physiol. Cell Physiol. 301, C431–C440 (2011)

    Article  Google Scholar 

  • T. Abumiya, T. Sasaguri, Y. Taba, Y. Miwa, M. Miyagi, Arterioscler. Thromb. Vasc. Biol. 22, 907–913 (2002)

    Article  Google Scholar 

  • S. Akimoto, M. Mitsumata, T. Sasaguri, Y. Yoshida, Circ. Res. 86, 185–190 (2000)

    Google Scholar 

  • C.J. Bettinger, Z. Zhang, S. Gerecht, J.T. Borenstein, R. Langer, Adv. Mater. 20, 99–103 (2008)

    Article  Google Scholar 

  • L. Chau, M. Doran, J. Cooper-White, Lab. Chip 9, 1897–1902 (2009)

    Article  Google Scholar 

  • P.R. Colville-Nashand, D.L. Scott, Ann. Rheum. Dis. 51, 919–925 (1992)

    Article  Google Scholar 

  • L.E. Dickinson, M.E. Moura, S. Gerecht, Soft Matter 6, 5109–5119 (2010)

    Article  Google Scholar 

  • T. Ezashi, P. Das, R.M. Roberts, Proc. Natl. Acad. Sci. U. S. A. 102, 4783–4788 (2005)

    Article  Google Scholar 

  • S. Gerecht, C.J. Bettinger, Z. Zhang, J.T. Borenstein, G. Vunjak-Novakovic, R. Langer, Biomaterials 28, 4068–4077 (2007)

    Article  Google Scholar 

  • M.A. Guzzardi, F. Vozzi, A.D. Ahluwalia, Tissue Eng. Part A. 15, 3635–3644 (2009)

    Article  Google Scholar 

  • N.M. Hasan, G.E. Adams, M.C. Joiner, J.F. Marshall, I.R. Hart, Br. J. Cancer 77, 1799–1805 (1998)

    Article  Google Scholar 

  • H. Iwasaki, in Regulatory Networks in Stem Cells, ed. by (Humana Press, 2009), 165–175

  • M. Jiang, B. Wang, C. Wang, B. He, H. Fan, T.B. Guo, Q. Shao, L. Gao, Y. Liu, J. Cell. Biochem. 103, 321–334 (2008a)

    Article  Google Scholar 

  • M. Jiang, B. Wang, C. Wang, B. He, H. Fan, Q. Shao, L. Gao, Y. Liu, G. Yan, J. Pu, Int. J. Biochem. Cell Biol. 40, 2284–2295 (2008b)

    Article  Google Scholar 

  • J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Englewood Cliffs, Prentice-Hall, 1965)

    Google Scholar 

  • B.J. Kane, M.J. Zinner, M.L. Yarmush, M. Toner, Anal. Chem. 78, 4291–4298 (2006)

    Article  Google Scholar 

  • R.H. Lam, M.C. Kim, T. Thorsen, Anal. Chem. 81, 5918–5924 (2009)

    Article  Google Scholar 

  • E. Leclerc, Y. Sakai, T. Fujii, Biotechnol. Prog. 20, 750–755 (2004)

    Article  Google Scholar 

  • J.F. Lo, E. Sinkala, D.T. Eddington, Lab. Chip 10, 2394–2401 (2010)

    Article  Google Scholar 

  • G. Mehta, K. Mehta, D. Sud, J.W. Song, T. Bersano-Begey, N. Futai, Y.S. Heo, M.A. Mycek, J.J. Linderman, S. Takayama, Biomed. Microdevices 9, 123–134 (2007)

    Article  Google Scholar 

  • J.M. Ng, I. Gitlin, A.D. Stroock, G.M. Whitesides, Electrophoresis 23, 3461–3473 (2002)

    Article  Google Scholar 

  • S. Niebruegge, C.L. Bauwens, R. Peerani, N. Thavandiran, S. Masse, E. Sevaptisidis, K. Nanthakumar, K. Woodhouse, M. Husain, E. Kumacheva, P.W. Zandstra, Biotechnol. Bioeng. 102, 493–507 (2008)

    Article  Google Scholar 

  • K. Parmar, P. Mauch, J.A. Vergilio, R. Sackstein, J.D. Down, Proc. Natl. Acad. Sci. U. S. A. 104, 5431–5436 (2007)

    Article  Google Scholar 

  • M. Polinkovsky, E. Gutierrez, A. Levchenko, A. Groisman, Lab. Chip 9, 1073–1084 (2009)

    Article  Google Scholar 

  • K.A. Purpura, S.H. George, S.M. Dang, K. Choi, A. Nagy, P.W. Zandstra, Stem Cells 26, 2832–2842 (2008)

    Article  Google Scholar 

  • R.Y.F. Liu, A.P. Ranade, H.P. Wang, T.E. Bernal-Lara, A. Hiltner, E. Baer, Macromolecules 38, 10721–10727 (2005)

    Article  Google Scholar 

  • K.D. Rinker, V. Prabhakar, G.A. Truskey, Biophys. J. 80, 1722–1732 (2001)

    Article  Google Scholar 

  • W.L. Robb, Ann. N. Y. Acad. Sci. 146, 119–137 (1968)

    Article  Google Scholar 

  • S. Hess, V. Yakutkin, S. Baluschev, G. Wegner, Macromol. Rapid Commun. 30, 394–401 (2009)

    Article  Google Scholar 

  • D. Shweiki, M. Neeman, A. Itin, E. Keshet, Proc. Natl. Acad. Sci. U. S. A. 92, 768–772 (1995)

    Article  Google Scholar 

  • S. Therade-Matharan, E. Laemmel, J. Duranteau, E. Vicaut, Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1037–R1043 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Rohan Soman for his technical assistance. This research was partially funded by a pilot grant from NIH U54CA143868 (for G.D and S.G) and NIH U54CA143868 and National Science Foundation Grant 1054415 (for S.G).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sharon Gerecht or German Drazer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abaci, H.E., Devendra, R., Smith, Q. et al. Design and development of microbioreactors for long-term cell culture in controlled oxygen microenvironments. Biomed Microdevices 14, 145–152 (2012). https://doi.org/10.1007/s10544-011-9592-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9592-9

Keywords

Navigation