Skip to main content
Log in

A biopsy tool with integrated piezoceramic elements for needle tract cauterization and cauterization monitoring

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper reports the feasibility of biopsy needle tract cauterization and cauterization monitoring using an embedded array of piezoceramic microheaters. Circular heaters of lead zirconate titanate (PZT-5A), with 200 μm diameter and 70–80 μm thickness, are fabricated using a batch mode micro ultrasonic machining process. These are then assembled into cavities in the walls of 20-gauge stainless steel needles and sealed with epoxy. Experiments are performed by inserting the proposed biopsy needle into porcine tissue samples. The needle surface exceeds the minimum target temperature rise of 33°C for either radial or thickness mode vibrations. The corresponding input power levels are 236 mW and 325 mW, respectively. The tissue cauterization extends 1–1.25 mm beyond the perimeter of the needle and is uniform in all directions. After cauterization, the fundamental anti-resonance frequency and the corresponding impedance magnitude of the PZT heater decrease by 4.1% and 42.6%, respectively, thereby providing a method to monitor the extent of tissue cauterization. A sensing interface circuit capable of measuring the resonance frequency shift of the PZT elements is built and tested using discrete integrated circuit components. The circuit detects the resonance frequency shift from 8.22 MHz to 7.96 MHz of the PZT elements when the biopsy needle is inserted into wax medium. An interface circuit for actuation of the PZT elements for tissue cauterization is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Portions of this paper have been published in conference abstract form in (Visvanathan et al. 2010a, b)

References

  • D.J. Allison, A. Adam, Radiology 169, 261–263 (1988)

    Google Scholar 

  • R.G. Amedee, N.R. Dhurandhar, Laryngoscope 111, 1551–1557 (2001)

    Article  Google Scholar 

  • H.L. Bandey, S.J. Martin, R.W. Cernosek, Anal. Chem. 71, 2205–2214 (1999)

    Article  Google Scholar 

  • R.A. Chisholm, S.N. Jones, W.R. Lees, Clin. Radiol. 40, 627–628 (1989)

    Article  Google Scholar 

  • R. Chopra, M.J. Bronskill, F.S. Foster, Medical Physics 27, 1281–1286 (2000)

    Article  Google Scholar 

  • I. de Sio, L. Castellano, M. Calandra, C. Del Vecchio-Blanco, European Journal of Ultrasound 15, 65–68 (2002)

    Article  Google Scholar 

  • C.F. Diederich, W.H. Nau, P.R. Stauffer, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 46, 1218–1228 (1999)

    Article  Google Scholar 

  • F. Durand, J.M. Regimbeau, J. Belghiti, A. Sauvanet, V. Vilgrain, B. Terris, V. Moutardier, O. Farges, D. Valla, J. Hepatol. 35, 254–288 (2001)

    Article  Google Scholar 

  • F.M. Durville, R.R. Rediker, R.J. Connolly, S.D. Schwaitzberg, J. Lantis, SPIE Conference on Gastrointestinal Surgery, San Jose, 1999, 420–424

  • F. Eichelbaum, R. Borngraber, J. Shroder, R. Lucklum, Review of Scientific Instruments 70, 2537–2545 (1999)

    Article  Google Scholar 

  • J.K. Falstrom, M.M. Moore, S.H. Caldwell, A.H. Matsumoto, R.D. Abbott, W.D. Spotnitz, J. Vasc. Interv. Radiol. 10, 457–462 (1999)

    Article  Google Scholar 

  • X.Z. Fan, N. Siwak, R. Ghodssi, Journal of Micromechanics and Microengineering 21, 045008 (2011)

    Article  Google Scholar 

  • C.A. Fandrich, R.P. Davies, P.M. Hall, Australas. Radiol. 40, 230–234 (1996)

    Article  Google Scholar 

  • O. Goletti, M. Chiarugi, P. Buccianti, P. Macchiarini, Eur. J. Surg. Oncol. 18, 636–637 (1992)

    Google Scholar 

  • F.R. Haase, J.T. Noguera, Arch. Otolaryngol. 75, 125–126 (1962)

    Article  Google Scholar 

  • G.T. Huang, J.C. Sheu, P.M. Yang, H.S. Lee, T.H. Wang, D.S. Chen, J. Hepatol. 25, 334–338 (1996)

    Article  Google Scholar 

  • K. Hynynen, Medical Physics 19, 979–987 (1992)

    Article  Google Scholar 

  • B.J. Jarosz, IEEE Trans. Biomed. Eng. 43, 1106–1115 (1996)

    Article  Google Scholar 

  • E.H. Kim, K.K. Kopecky, O.W. Cummings, R.G. Dreesen, D.C. Pound, Investig. Radiol. 28, 228–230 (1993)

    Article  Google Scholar 

  • S.H. Kim, H.K. Lim, W.J. Lee, J.M. Cho, H.J. Jang, Abdominal Imaging 25, 246–250 (2000)

    Article  Google Scholar 

  • M.Z. Kiss, T. Varghese, T.J. Hall, Physics in Medicine and Biology 49, 4207–4218 (2004)

    Article  Google Scholar 

  • C. Lafon, D.M. de Lima, Y. Theillière, F. Prat, J.Y. Chapelon, D. Cathignol, Medical Physics 29, 290–297 (2002)

    Article  Google Scholar 

  • T. Li, Y.B. Gianchandani, Journal of Microelectromechanical Systems 15, 605–612 (2006)

    Article  Google Scholar 

  • T. Li, R.Y. Gianchandani, Y.B. Gianchandani, Lab on a Chip 7, 179–185 (2007)

    Article  Google Scholar 

  • J.M. Llovet, R. Vilana, C. Bru, L. Bianchi, J.M. Salmeron, L. Boix, S. Ganau, M. Sala, M. Pages, C. Ayuso, M. Sole, J. Rodes, J. Bruix, Barcelona clinic liver cancer group, Hepatology 33, 1124–1129 (2001)

    Article  Google Scholar 

  • I.R.S. Makin, T.D. Mast, W. Faidi, M.R. Runk, P.G. Barthe, M.H. Slayton, Ultrasound in Medicine and Biology 31, 1539–1550 (2005)

    Article  Google Scholar 

  • G.Y. Minuk, L.R. Sutherland, D.A. Wiseman, F.R. MacDonald, D.L. Ding, Gastroenterology 92, 290–293 (1987)

    Google Scholar 

  • T. Mizutani, H. Takanari, H. Suzuki, K. Wada, T. Mizumoto, T. Sato, S. Namikawa, M. Kusagawa, Journal of Clinical Laser Medicine and Surgery 10, 223–228 (1992)

    Google Scholar 

  • W. Pan, P. Soussan, B. Nauwelaers, H.A.C. Tilmans, Sensors and Actuators A 126, 436–446 (2006)

    Article  Google Scholar 

  • E.K. Paulson, G.R. Stephenson, M.C. Neal, V. Rossin, J.H. Lawson, J. Vasc. Interv. Radiol. 11, 905–911 (2000)

    Article  Google Scholar 

  • A. Pelloni, P. Gertsch, Schweiz Med Wochenschr 130, 871–877 (2000)

    Google Scholar 

  • H.H. Pennes, J. Appl. Physiol. 1, 93–122 (1948)

    Google Scholar 

  • F. Piccinino, E. Sagnelli, G. Pasquale, G. Giusti, J. Hepatol. 2, 165–173 (1986)

    Article  Google Scholar 

  • W.F. Pritchard, D.W. Cahen, J.W. Karanian, S. Hilbertand, B.J. Wood, J. Vasc. Interv. Radiol. 15, 183–187 (2004)

    Article  Google Scholar 

  • P.W. Ralls, J.A. Barakos, E.M. Kaptein, P.E. Friedman, G. Fouladian, W.D. Bose, J. Halls, S.G. Massry, J. Comput. Assist. Tomogr. 11, 1031–1034 (1987)

    Article  Google Scholar 

  • S.D. Ryder, Gut 52, 1–8 (2003)

    Article  Google Scholar 

  • T.G. Schuster, J.S. Wolf, J. Urol. 165, 1968–1970 (2001)

    Article  Google Scholar 

  • M.G. Skinner, M.N. Iiuzuka, M.C. Kolios, M.D. Sherar, Physics in Medicine and Biology 43, 3535–3547 (1998)

    Article  Google Scholar 

  • T.P. Smith, V.G. McDermott, D.M. Ayoub, P.V. Suhocki, D.J. Stackhouse, Radiology 198, 769–774 (1996)

    Google Scholar 

  • S. Sugano, Y. Sumino, T. Hatori, H. Mizugami, T. Kawafune, T. Abei, Dig. Dis. Sci. 36, 1229–1233 (1991)

    Article  Google Scholar 

  • R. Takamori, L.L. Wong, C. Dang, L. Wong, Liver Transplantation 6, 67–72 (2000)

    Google Scholar 

  • P.D. Tyreus, C.J. Diederich, Physics in Medicine and Biology 47, 490–498 (2002)

    Article  Google Scholar 

  • K. Visvanathan, Y.B. Gianchandani, IEEE International Conference on Solid-State Sensors, Actuators, and Microsystems (Transducers), Denver, Colorado, 2009, 2421–2424.

  • K. Visvanathan, Y.B. Gianchandani, IEEE/ASME International Conference on Micro Electro Mechanical Systems (MEMS 10), Hong Kong, 2010, 987–1000.

  • K. Visvanathan, T. Li, Y.B. Gianchandani, International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2010), Groningen, The Netherlands, 2010, 1478–1480.

  • K. Visvanathan, Ph.D. Thesis, University of Michigan, 2011

  • M. Zins, V. Vilgrain, S. Gayno, Y. Rolland, L. Arrive, M.H. Denninger, M.P. Vullierme, D. Najmark, Y. Menu, H. Nahum, Radiology 184, 841–843 (1992)

    Google Scholar 

Download references

Acknowledgement

Portions of study related to piezothermal heat generation were supported in part by Defense Advanced Research Projects Agency Microsystems Technology office (DARPA-MTO). KV acknowledges partial support by a fellowship from the Mechanical Engineering department at University of Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Visvanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visvanathan, K., Li, T. & Gianchandani, Y.B. A biopsy tool with integrated piezoceramic elements for needle tract cauterization and cauterization monitoring. Biomed Microdevices 14, 55–65 (2012). https://doi.org/10.1007/s10544-011-9585-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9585-8

Keywords

Navigation