Skip to main content
Log in

A rotational ablation tool for calcified atherosclerotic plaque removal

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Atherosclerosis is a major cardiovascular disease involving accumulations of lipids, white blood cells, and other materials on the inside of artery walls. Since the calcification found in the advanced stage of atherosclerosis dramatically enhances the mechanical properties of the plaque, restoring the original lumen of the artery remains a challenge. High-speed rotational atherectomy, when performed with an ablating grinder to remove the plaque, produces much better results in the treatment of calcified plaque compared to other methods. However, the high-speed rotation of the Rotablator commercial rotational atherectomy device produces microcavitation, which should be avoided because of the serious complications it can cause. This research involves the development of a high-speed rotational ablation tool that does not generate microcavitation. It relies on surface modification to achieve the required surface roughness. The surface roughness of the tool for differential cutting was designed based on lubrication theory, and the surface of the tool was modified using Nd:YAG laser beam engraving. Electron microscope images and profiles indicated that the engraved surface of the tool had approximately 1 μm of root mean square surface roughness. The ablation experiment was performed on hydroxyapatite/polylactide composite with an elastic modulus similar to that of calcified plaque. In addition, differential cutting was verified on silicone rubber with an elastic modulus similar to that of a normal artery. The tool performance and reliability were evaluated by measuring the ablation force exerted, the size of the debris generated during ablation, and through visual inspection of the silicone rubber surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • K.M. Abbo, M. Dooris, S. Glazier, W.W. O’neill, D. Byrd, C.L. Grines, R.D. Safian, The Am. J. Cardiol. 75, 12 (1995)

    Article  Google Scholar 

  • S.S. Ahn, D. Auth, D.R. Marcus, W.S. Moore, J. Vasc. Surg. 7, 2 (1988)

    Google Scholar 

  • R.M. Bersin, C.A. Simonton, Catheter. Cardiovasc. Interv. 58, 4 (2003)

    Article  Google Scholar 

  • O.F. Bertrand, R. Sipehia, R. Mongrain, J. Rodes, J.-C. Tardif, L. Bilodeau, G. Cote, M.G. Bourassa, J. Am. Coll. Cardiol. 32, 3 (1998)

    Article  Google Scholar 

  • C. Bredlau, G. Roubin, P. Leimgruber, J. Douglas Jr., S. King 3d, A. Gruentzig, Circ. 72, 5 (1985)

    Article  Google Scholar 

  • E. Cavusoglu, A.S. Kini, J.D. Marmur, S.K. Sharma, Catheter. Cardiovasc. Interv. 62, 4 (2004)

    Article  Google Scholar 

  • R.W. Culbert, J. Biol. Chem. 109, 2 (1935)

    Google Scholar 

  • D.M. Ebenstein, Diss., Bioengneering, Univ. of California, Berkeley, with Univ. of California, San Francisco, (2002)

  • D.M. Ebenstein, L.A. Pruitt, Nano Today 1, 3 (2006)

    Article  Google Scholar 

  • E. Eeckhout, M.J. Kern, Eur. Heart J. 22, 9 (2001)

    Article  Google Scholar 

  • S. Ellis, J. Popma, M. Buchbinder, I. Franco, M. Leon, K. Kent, A. Pichard, L. Satler, E. Topol, P. Whitlow, Circ. 89, 2 (1994)

    Google Scholar 

  • A.C. Fischer-Cripps, Nanoindentation, 2nd edn. (Springer, New York, 2004)

    Google Scholar 

  • B.J. Hamrock, D. Dowson, J. Lubr. Technol. 100, 2 (1978)

    Article  Google Scholar 

  • B.J. Hamrock, S.R. Schmid, B.O. Jacobson, Fundamentals of fluid film lubrication (Marcel Dekker, New York, 2004)

    Book  Google Scholar 

  • N. Ignjatovic, S. Tomic, M. Dakic, M. Miljkovic, M. Plavsic, D. Uskokovic, Biomater. 20, 9 (1999)

    Article  Google Scholar 

  • N. Ignjatovic, D. Uskokovic, Appl. Surf. Sci. 238, 1–4 (2004)

    Article  Google Scholar 

  • H. Im, K.H. Oh, S.G. Kim, S. Jeong, Int. J. Precis. Eng. Manuf. 10, 4 (2009)

    Article  Google Scholar 

  • S.A. Johnson, M.J. Adams, A. Arvanitaki, B.J. Briscoe, Tribol. Ser. 32 (1997)

  • G.D. Kim, J.T. Rundel, B.K. Paul, Int. J. Precis. Eng. Manuf. 11, 5 (2010)

    Article  Google Scholar 

  • A. Kini, J.D. Marmur, S. Duvvuri, G. Dangas, S. Choudhary, S.K. Sharma, Catheter. Cardiovasc. Interv. 46, 3 (1999)

    Article  Google Scholar 

  • A.A. Lubrecht, C.H. Venner, Proc. Inst. Mech. Eng. - Part J - J. Eng. Tribol. 213 (1999)

  • G. Mayer, Can. Méd. Assoc. J. 91, 18 (1964)

    Google Scholar 

  • M. Nakao, K. Tsuchiya, W. Maeda, D. Iijima, CIRP Ann. - Manuf. Technol. 54, 1 (2005)

    Google Scholar 

  • W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 6 (1992)

    Article  Google Scholar 

  • T.J. Romer, J.F. Brennan III, M. Fitzmaurice, M.L. Feldstein, G. Deinum, J.L. Myles, J.R. Kramer, R.S. Lees, M.S. Feld, Circ. 97, 9 (1998)

    Google Scholar 

  • R.D. Safian, K.A. Niazi, M. Strzelecki, A. Lichtenberg, M.A. May, N. Juran, M. Freed, R. Ramos, V. Gangadharan, C.L. Grines, Circ. 88, 3 (1993)

    Google Scholar 

  • R. Stribeck, Zeitschrift des Vereines Deutscher Ingenieure. 46 (1902)

  • Smooth-on, Technical overview, (2009), http://www.smooth-on.com/tb/files/Mold_Max_Series_TB.pdf. Accessed 12 July 2009

  • R.J. Zotz, R. Erbel, A. Philipp, A. Judt, H. Wagner, W. Lauterborn, J. Meyer, Catheter. Cardiovasc. Diagn. 26, 2 (1992)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by a Grant-in-Aid for Strategy Technology Development Programs from the Korea Ministry of Knowledge Economy (No.10030046), a grant from the Seoul R&BD Program (TR080578), and second stage of Brain Korea 21 of Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hoon Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MH., Kim, HJ., Kim, N.N. et al. A rotational ablation tool for calcified atherosclerotic plaque removal. Biomed Microdevices 13, 963–971 (2011). https://doi.org/10.1007/s10544-011-9566-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9566-y

Keywords

Navigation