Skip to main content
Log in

Evaluation of transdifferentiation from mesenchymal stem cells to neuron-like cells using microfluidic patterned co-culture system

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We design a microfluidic patterned co-culture system for mouse mesenchymal stem cells (mMSCs) and neural cells to demonstrate the paracrine effects produced by the neural cells in facilitating the transdifferentiation from mMSCs to neuron-like cells. Neural cells and mMSC are orderly patterned in the microfluidic co-culturing system without direct cell contact. This configuration provides us to calculate the percentage of neural marker transdifferentiated by mMSCs easily. We obtain higher transdifferentiated ratio of mMSC in the microfluidic co-culturing system (beta III tubulin: 67%; glial fibrillary acidic protein (GFAP): 86.2%) as compared with the traditional transwell co-culturing system (beta III tubulin: 59.8%; GFAP: 52.0%), which is similar to the spontaneous neural marker expression in the undifferentiated MSCs (beta III tubulin: 47.5%; GFAP: 60.1%). Furthermore, mMSCs expressing green fluorescent protein and neural cells expressing red fluorescent protein were also used in our co-culture system to demonstrate the rarely occurring or observed cell fusion phenomenon. The results show that the co-cultured neural cells increased the transdifferentiation efficiency of mMSCs from soluble factors secreted by neural cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • T. Aigner, J. Stove, Adv Drug Deliv Rev 55, 1569–1593 (2003)

    Article  Google Scholar 

  • A.R. Alexanian, Exp Cell Res 310, 383–391 (2005)

    Article  Google Scholar 

  • F. Anjos-Afonso, E.K. Siapati, D. Bonnet, J Cell Sci 117, 5655–5664 (2004)

    Article  Google Scholar 

  • F. Arai, A. Hirao, T. Suda, Trends Cardiovasc Med 15, 75–79 (2005)

    Article  Google Scholar 

  • S.N. Bhatia, U.J. Balis, M.L. Yarmush, M. Toner, FASEB J 13, 1883–1900 (1999)

    Google Scholar 

  • M. Bowden, O. Geschke, J.P. Kutter, D. Diamond, Lab Chip 3, 221–223 (2003)

    Article  Google Scholar 

  • J.Y. Cheng, M.H. Yen, C.W. Wei, Y.C. Chuang, T.H. Young, J Micromech Microeng 15, 1147–1156 (2005)

    Article  Google Scholar 

  • D.T. Chiu, N.L. Jeon, S. Huang, R.S. Kane, C.J. Wargo, I.S. Choi, D.E. Ingber, G.M. Whitesides, Proc Natl Acad Sci USA 97, 2408–2413 (2000)

    Article  Google Scholar 

  • M. Egerbacher, R. Krestan, P. Bock, Anat Rec 242, 471–482 (1995)

    Article  Google Scholar 

  • B.A. Fogarty, K.E. Heppert, T.J. Cory, K.R. Hulbutta, R.S. Martin, S.M. Lunte, Analyst 130, 924–930 (2005)

    Article  Google Scholar 

  • E. Fuchs, T. Tumbar, G. Guasch, Cell 116, 769–778 (2004)

    Article  Google Scholar 

  • H.J.G. Gundersen, E.B. Jensen, J Microsc -Oxf 147, 229–263 (1987)

    Google Scholar 

  • J.A. Hainfellner, T. Voigtlander, T. Strobel, P.R. Mazal, A.S. Maddalena, A. Aguzzi, H. Budka, J Neuropathol Exp Neurol 60, 449–461 (2001)

    Google Scholar 

  • L.A. Isakova, K. Baker, J. Dufour, D. Gaupp, D.G. Phinney, Mol Ther 13, 1173–1184 (2006)

    Article  Google Scholar 

  • K.K. Johe, T.G. Hazel, T. Muller, M.M. DugichDjordjevic, R.D.G. McKay, Genes Dev 10, 3129–3140 (1996)

    Article  Google Scholar 

  • G.C. Kopen, D.J. Prockop, D.G. Phinney, Proc Natl Acad Sci USA 96, 10711–10716 (1999)

    Article  Google Scholar 

  • C. Krabbe, J. Zimmer, M. Meyer, APMIS 113, 831–844 (2005)

    Article  Google Scholar 

  • J.Y. Lee, C. Jones, M.A. Zern, A. Revzin, Anal Chem 78, 8305–8312 (2006)

    Article  Google Scholar 

  • T.H. Park, M.L. Shuler, Biotechnol Prog 19, 243–253 (2003)

    Article  Google Scholar 

  • D.G. Phinney, D.J. Prockop, Stem Cells 25, 2896–2902 (2007)

    Article  Google Scholar 

  • J. Ray, F.H. Gage, Mol Cell Neurosci 31, 560–573 (2006)

    Article  Google Scholar 

  • J. Sanchez-Ramos, S. Song, F. Cardozo-Pelaez, C. Hazzi, T. Stedeford, A. Willing, R.W. Sands, D.J. Mooney, Curr Opin Biotechnol 18, 448–453 (2007)

    Article  Google Scholar 

  • S.J. Song, J. Sanzhez-Ramos, Exp Neurol 184, 54–60 (2003)

    Article  Google Scholar 

  • W. Tan, T.A. Desai, Tissue Eng 9, 255–267 (2003)

    Article  Google Scholar 

  • R.Y.L. Tsai, R.D.G. McKay, J Neurosci 20, 3725–3735 (2000)

    Google Scholar 

  • F.P. Wachs, S. Couillard-Despres, M. Engelhardt, D. Wilhelm, S. Ploetz, M. Vroemen, J. Kaesbauer, G. Uyanik, J. Klucken, C. Karl, J. Tebbing, C. Svendsen, N. Weidner, H.G. Kuhn, J. Winkler, L. Aigner, Lab Invest 83, 949–962 (2003)

    Article  Google Scholar 

  • M.J. West, L. Slomianka, H.J.G. Gundersen, Anat Rec 231, 482–497 (1991)

    Article  Google Scholar 

  • S. Wislet-Gendebien, G. Hans, P. Leprince, J.M. Rigo, G. Moonen, B. Rogister, Stem Cells 23, 392–402 (2005)

    Article  Google Scholar 

  • M.H. Yen, J.Y. Cheng, C.W. Wei, Y.C. Chuang, T.H. Young, J Micromech Microeng 16, 1143–1153 (2006)

    Article  Google Scholar 

  • H.M. Yu, I. Meyvantsson, I.A. Shkel, D.J. Beebe, Lab Chip 5, 1089–1095 (2005)

    Article  Google Scholar 

  • D.J. Yuan, S. Das, J. Appl. Phys. 101 (2007)

  • B.A. Reynolds, S. Weiss, Science 255, 1707–1710 (1992)

  • R.W. Sands, D.J. Mooney, Curr Opin Biotechnol 18, 448–453 (2007)

    Google Scholar 

  • F.S.H. Hsiao, C.C. Cheng, S.Y. Peng, H.Y. Huang, W.S. Lian, M.L. Jan, Y.T. Fang, E.C.H. Cheng, K.H. Lee, W.T.K. Cheng, S.P. Lin, S.C. Wu, Cell Prolif 43, 235–248 (2010)

    Google Scholar 

Download references

Acknowledgements

We acknowledged the financial support by National Science Council of Taiwan for this research (NSC98-2221-E-002-045-MY3). This research was also partially financial supported by NTUH Grants VN97-100, National Taiwan University Hospital, Taipei, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-You Huang.

Additional information

De-Yao Wang and Shinn-Chih Wu are equally contributed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, DY., Wu, SC., Lin, SP. et al. Evaluation of transdifferentiation from mesenchymal stem cells to neuron-like cells using microfluidic patterned co-culture system. Biomed Microdevices 13, 517–526 (2011). https://doi.org/10.1007/s10544-011-9520-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9520-z

Keywords

Navigation