Skip to main content
Log in

A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The advent of microfluidic technology allows control and interrogation of cell behavior by defining the local microenvironment with an assortment of biochemical and biophysical stimuli. Many approaches have been developed to create gradients of soluble factors, but the complexity of such systems or their inability to create defined and controllable chemical gradients has limited their widespread implementation. Here we describe a new microfluidic device which employs a parallel arrangement of wells and channels to create stable, linear concentration gradients in a gel region between a source and a sink well. Pressure gradients between the source and sink wells are dissipated through low resistance channels in parallel with the gel channel, thus minimizing the convection of solute in this region. We demonstrate the ability of the new device to quantitate chemotactic responses in a variety of cell types, yielding a complete profile of the migratory response and representing the total number of migrating cells and the distance each cell has migrated. Additionally we show the effect of concentration gradients of the morphogen Sonic hedgehog on the specification of differentiating neural progenitors in a 3-dimensional matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • A. Abbott, Cell culture: biology’s new dimension. Nature 424(6951), 870–872 (2003)

    Article  Google Scholar 

  • V.V. Abhyankar, M.A. Lokuta et al., Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab. Chip 6(3), 389–393 (2006)

    Article  Google Scholar 

  • V.V. Abhyankar, M.W. Toepke et al., A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab. Chip 8(9), 1507–1515 (2008)

    Article  Google Scholar 

  • D. Amarie, J.A. Glazier et al., Compact microfluidic structures for generating spatial and temporal gradients. Anal. Chem. 79(24), 9471–9477 (2007)

    Article  Google Scholar 

  • J. Atencia, J. Morrow et al., The microfluidic palette: a diffusive gradient generator with spatio-temporal control. Lab. Chip 9(18), 2707–2714 (2009)

    Article  Google Scholar 

  • E. Biddiss, D. Li, Electrokinetic generation of temporally and spatially stable concentration gradients in microchannels. J. Colloid Interface Sci. 288(2), 606–615 (2005)

    Article  Google Scholar 

  • K.E. Bornfeldt, E.W. Raines, T. Nakano, L.M. Graves, E.G. Krebs, R. Ross, Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J. Clin. Invest. 93(3), 1266–1274 (1994)

    Article  Google Scholar 

  • S. Boyden, The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 113(3), 453–466 (1962)

    Article  Google Scholar 

  • J. Briscoe, Making a grade: Sonic Hedgehog signalling and the control of neural cell fate. EMBO J. 28(5), 457–465 (2009)

    Article  Google Scholar 

  • S.-Y. Cheng, S. Heilman et al., A hydrogel-based microfluidic device for the studies of directed cell migration. Lab. Chip 7(6), 763–769 (2007)

    Article  Google Scholar 

  • J.Y. Cheng, M.H. Yen et al., A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics 2(2), 24105 (2008)

    Article  Google Scholar 

  • B.G. Chung, L.A. Flanagan et al., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab. Chip 5(4), 401–406 (2005)

    Article  Google Scholar 

  • B.G. Chung, A. Manbachi et al., A gradient-generating microfluidic device for cell biology. J. Vis. Exp. 7, 271 (2007)

    Google Scholar 

  • S. Chung, R. Sudo et al., Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab. Chip 9(2), 269–275 (2009)

    Article  Google Scholar 

  • G.A. Cooksey, C.G. Sip et al., A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab. Chip 9(3), 417–426 (2009)

    Article  Google Scholar 

  • E. Cukierman, R. Pankov et al., Taking cell-matrix adhesions to the third dimension. Science 294(5547), 1708–1712 (2001)

    Article  Google Scholar 

  • E. Dessaud, L.L. Yang et al., Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450(7170), 717–720 (2007)

    Article  Google Scholar 

  • E. Dessaud, A.P. McMahon et al., Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135(15), 2489–2503 (2008)

    Article  Google Scholar 

  • J. Diao, L. Young et al., A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab. Chip 6(3), 381–388 (2006)

    Article  Google Scholar 

  • Y. Du, J. Shim et al., Rapid generation of spatially and temporally controllable long-range concentration gradients in a microfluidic device. Lab. Chip 9(6), 761–767 (2009)

    Article  Google Scholar 

  • D.L. Englert, M.D. Manson et al., Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl. Environ. Microbiol. 75(13), 4557–4564 (2009)

    Article  Google Scholar 

  • S. Even-Ram, K.M. Yamada, Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17(5), 524–532 (2005)

    Article  Google Scholar 

  • S. Fok, P. Domachuk et al., Planar microfluidic chamber for generation of stable and steep chemoattractant gradients. Biophys. J. 95(3), 1523–1530 (2008)

    Article  Google Scholar 

  • C.W. Frevert, G. Boggy et al., Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve. Lab. Chip 6(7), 849–856 (2006)

    Article  Google Scholar 

  • P. Friedl, B. Weigelin, Interstitial leukocyte migration and immune function. Nat. Immunol. 9(9), 960–969 (2008)

    Article  Google Scholar 

  • G.M. Gabriel, K. John, Endothelial cell protrusion and migration in three-dimensional collagen matrices. Cell Motil. Cytoskeleton 63(2), 101–115 (2006)

    Article  Google Scholar 

  • J.S. Garanich, M. Pahakis et al., Shear stress inhibits smooth muscle cell migration via nitric oxide-mediated downregulation of matrix metalloproteinase-2 activity. Am. J. Physiol. Heart Circ. Physiol. 288(5), H2244–2252 (2005)

    Article  Google Scholar 

  • M. Ghibaudo, L. Trichet et al., Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophys. J. 97(1), 357–368 (2009)

    Article  Google Scholar 

  • T. Glawdel, C. Elbuken et al., Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)-towards water toxicity testing. Lab. Chip 9(22), 3243–3250 (2009)

    Article  Google Scholar 

  • U. Haessler, Y. Kalinin et al., An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices 11(4), 827–835 (2009)

    Article  Google Scholar 

  • X. Hai-Qing, M. Elizabeth et al., A Subset of ES-Cell-derived neural cells marked by gene targeting. Stem Cells 21(1), 41–49 (2003)

    Article  Google Scholar 

  • K. Hattori, S. Sugiura et al., Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Lab. Chip 9(12), 1763–1772 (2009)

    Article  Google Scholar 

  • J. He, Y. Du et al., Rapid generation of biologically relevant hydrogels containing long-range chemical gradients. Adv. Funct. Mater. 20(1), 131–137 (2010)

    Article  Google Scholar 

  • P. Herzmark, K. Campbell et al., Bound attractant at the leading vs. the trailing edge determines chemotactic prowess. PNAS 104(33), 13349–54 (2007)

    Article  Google Scholar 

  • J. Hesselgesser, M. Liang et al., Identification and characterization of the CXCR4 chemokine receptor in human T cell lines: ligand binding, biological activity, and HIV-1 infectivity. J. Immunol. 160(2), 877–883 (1998)

    Google Scholar 

  • D. Irimia, D.A. Geba et al., Universal microfluidic gradient generator. Anal. Chem. 78(10), 3472–3477 (2006)

    Article  Google Scholar 

  • H. Jeon, Y. Lee et al., Quantitative analysis of single bacterial chemotaxis using a linear concentration gradient microchannel. Biomed. Microdevices 11(5), 1135–1143 (2009)

    Article  Google Scholar 

  • P. Joong Yull, K. Suel-Kee et al., Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient. Stem Cells 27(11), 2646–2654 (2009)

    Article  Google Scholar 

  • Y.V. Kalinin, L. Jiang et al., Logarithmic sensing in escherichia coli bacterial chemotaxis. Biophys. J. 96(6), 2439–2448 (2009)

    Article  Google Scholar 

  • T. Kang, J. Han et al., Concentration gradient generator using a convective-diffusive balance. Lab. Chip 8(7), 1220–1222 (2008)

    Article  Google Scholar 

  • T.M. Keenan, A. Folch, Biomolecular gradients in cell culture systems. Lab. Chip 8(1), 34–57 (2008)

    Article  Google Scholar 

  • D. Kim, M.A. Lokuta et al., Selective and tunable gradient device for cell culture and chemotaxis study. Lab. Chip 9(12), 1797–1800 (2009a)

    Article  Google Scholar 

  • T. Kim, M. Pinelis et al., Generating steep, shear-free gradients of small molecules for cell culture. Biomed. Microdevices 11(1), 65–73 (2009b)

    Article  Google Scholar 

  • D.J. Laird, U.H. von Andrian et al., Stem cell trafficking in tissue development, growth, and disease. Cell 132(4), 612–630 (2008)

    Article  Google Scholar 

  • J. Lee, M.J. Cuddihy et al., Three-dimensional cell culture matrices: state of the art. Tissue Eng. B Rev. 14(1), 61–86 (2008)

    Article  Google Scholar 

  • N. Li Jeon, H. Baskaran et al., Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotech. 20(8), 826–830 (2002)

    Google Scholar 

  • C.-W. Li, R. Chen et al., Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution. Lab. Chip 7(10), 1371–1373 (2007)

    Article  Google Scholar 

  • G. Li, J. Liu et al., Multi-molecular gradients of permissive and inhibitory cues direct neurite outgrowth. Ann. Biomed. Eng. 36(6), 889–904 (2008)

    Article  Google Scholar 

  • F. Lin, E.C. Butcher, T-cell chemotaxis in a simple microfluidic device. Lab. Chip 6(11), 1462–1469 (2006)

    Article  Google Scholar 

  • F. Lin, W. Saadi et al., Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab. Chip 4(3), 164–167 (2004)

    Article  Google Scholar 

  • Y. Liu, J. Sai et al., Microfluidic switching system for analyzing chemotaxis responses of wortmannin-inhibited HL-60 cells. Biomed. Microdevices 10(4), 499–507 (2008)

    Article  Google Scholar 

  • P.J. Mack, Y. Zhang et al., Biomechanical regulation of endothelium-dependent events critical for adaptive remodeling. J. Biol. Chem. 284(13), 8412–8420 (2009)

    Article  Google Scholar 

  • H. Mao, P.S. Cremer et al., A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl Acad. Sci. USA 100(9), 5449–5454 (2003)

    Article  Google Scholar 

  • J.-A. Montero, C.-P. Heisenberg, Gastrulation dynamics: cells move into focus. Trends Cell Biol. 14(11), 620–627 (2004)

    Article  Google Scholar 

  • B. Mosadegh, C. Huang et al., Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels. Langmuir 23(22), 10910–10912 (2007)

    Article  Google Scholar 

  • K. Motoo, N. Toda et al., Generation of concentration gradient from a wave-like pattern by high frequency vibration of liquid–liquid interface. Biomed. Microdevices 10(3), 329–335 (2008)

    Article  Google Scholar 

  • R.D. Nelson, P.G. Quie et al., Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 115(6), 1650–1656 (1975)

    Google Scholar 

  • M. O’Hayre, C.L. Salanga et al., Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem. J. 409(3), 635–649 (2008)

    Article  Google Scholar 

  • J.Y. Park, C.M. Hwang et al., Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient. Lab. Chip 7(12), 1673–1680 (2007)

    Article  Google Scholar 

  • J.Y. Park, S.J. Yoo et al., Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow. Lab. Chip 9(15), 2194–2202 (2009)

    Article  Google Scholar 

  • W. Saadi, S.-J. Wang et al., A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed. Microdevices 8(2), 109–118 (2006)

    Article  Google Scholar 

  • W. Saadi, S. Rhee et al., Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9(5), 627–635 (2007)

    Article  Google Scholar 

  • A. Shamloo, N. Ma et al., Endothelial cell polarization and chemotaxis in a microfluidic device. Lab. Chip 8(8), 1292–1299 (2008)

    Article  Google Scholar 

  • W. Siyan, Y. Feng et al., Application of microfluidic gradient chip in the analysis of lung cancer chemotherapy resistance. J. Pharm. Biomed. Anal. 49(3), 806–810 (2009)

    Article  Google Scholar 

  • K.S.M. Smalley, M. Lioni et al., Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell. Dev. Biol. Anim. 42(8), 242–247 (2006)

    Article  Google Scholar 

  • R. Sudo, S. Chung et al., Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 23(7), 2155–2164 (2009)

    Article  Google Scholar 

  • S. Sun, J. Wise et al., Human fibroblast migration in three-dimensional collagen gel in response to noninvasive electrical stimulus. I. Characterization of induced three-dimensional cell movement. Tissue Eng. 10(9–10), 1548–1557 (2004)

    Google Scholar 

  • K. Sun, Z. Wang et al., Modular microfluidics for gradient generation. Lab. Chip 8(9), 1536–1543 (2008)

    Article  Google Scholar 

  • L. Tingjiao, L. Chunyu et al., A microfluidic device for characterizing the invasion of cancer cells in 3-D matrix. Electrophoresis 30(24), 4285–4291 (2009)

    Article  Google Scholar 

  • F. Ulloa, E. MartÌ, Wnt won the war: antagonistic role of Wnt over Shh controls dorso-ventral patterning of the vertebrate neural tube. Dev. Dyn. 239(1), 69–76 (2010)

    Google Scholar 

  • C.T. Veldkamp, C. Seibert et al., Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci. Signal. 1(37), ra4 (2008)

    Article  Google Scholar 

  • R.B. Vernon, E.H. Sage, A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc. Res. 57(2), 118–133 (1999)

    Article  Google Scholar 

  • V. Vickerman, J. Blundo et al., Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab. Chip 8(9), 1468–1477 (2008)

    Article  Google Scholar 

  • S.A. Vokes, H. Ji et al., Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development 134, 1977–1989 (2007)

    Google Scholar 

  • S. Wang, J.M. Tarbell, Effect of fluid flow on smooth muscle cells in a 3-dimensional collagen gel model. Arterioscler. Thromb. Vasc. Biol. 20(10), 2220–2225 (2000)

    Google Scholar 

  • H. Wu, B. Huang et al., Generation of complex, static solution gradients in microfluidic channels. J. Am. Chem. Soc. 128(13), 4194–4195 (2006)

    Article  Google Scholar 

  • J. Yang, X. Pi et al., Diffusion characteristics of a T-type microchannel with different configurations and inlet angles. Anal. Sci. 23(6), 697–703 (2007)

    Article  Google Scholar 

  • H.A. Yusuf, S.J. Baldock et al., Optimisation and analysis of microreactor designs for microfluidic gradient generation using a purpose built optical detection system for entire chip imaging. Lab. Chip 9(13), 1882–1889 (2009)

    Article  Google Scholar 

  • M.H. Zaman, R.D. Kamm et al., Computational model for cell migration in three-dimensional matrices. Biophys. J. 89(2), 1389–1397 (2005)

    Article  Google Scholar 

  • M.H. Zaman, L.M. Trapani et al., Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. 103(29), 10889–10894 (2006)

    Article  Google Scholar 

  • I. Zervantonakis, S. Chung et al., Concentration gradients in microfluidic 3D matrix cell culture systems. Intern. J. Micro-Nano Scale Transport 1(1), 27–36 (2010)

    Article  Google Scholar 

  • S. Zhang, F.V.W. George et al., Designer Self-assembling peptide nanofiber scaffolds for study of 3-D cell biology and beyond. Adv. Cancer Res. 99, 335–362 (2008). Academic Press

    Article  Google Scholar 

  • Y. Zhou, Y. Wang et al., Generation of complex concentration profiles by partial diffusive mixing in multi-stream laminar flow. Lab. Chip 9(10), 1439–1448 (2009)

    Article  Google Scholar 

  • X. Zhu, L.Y. Chu et al., Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation. Analyst 129(11), 1026–1031 (2004)

    Article  Google Scholar 

  • D. Zicha, G.A. Dunn et al., A new direct-viewing chemotaxis chamber. J. Cell Sci. 99(4), 769–775 (1991)

    Google Scholar 

  • S.H. Zigmond, Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75(2), 606–616 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health Grants EB003805, AG032977, T32EB006348, R01 AG032977, R37 NS054364, and F31HL095342.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(DOC 58 kb)

Fig. S1

Fig. S1 Rearranged RC circuits used to calculate the time constants for pressure dissipation in the RC device. (a) This circuit represents the path from the source well to the sink well that passes through the reservoir channels and the source and sink reservoir. (b) This circuit represents the path from the source well to sink well that passes through the high resistance gel region (JPEG 318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amadi, O.C., Steinhauser, M.L., Nishi, Y. et al. A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment. Biomed Microdevices 12, 1027–1041 (2010). https://doi.org/10.1007/s10544-010-9457-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9457-7

Keywords

Navigation