Skip to main content

Advertisement

Log in

Handheld impedance biosensor system using engineered proteinaceous receptors

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

An Erratum to this article was published on 12 August 2010

Abstract

We put forward an impedometric protein-based biosensor platform suitable for point-of-care diagnostics. A hand-held scale impedance reader system is described for the detection of corresponding physiochemical changes as the immobilized proteins bind to the analyte molecules in the proximity of the microfabricated electrodes. Specifically, we study the viability of this approach for glucose biosensing purposes using genetically engineered glucokinase as receptor proteins. The proposed reagent-less biosensor offers a high sensitivity of 0.5 mM glucose concentration level in the physiologically relevant range of 0.5 mM to 7.5 mM with less than 10 s response time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • K. Aoki, H. Suzuki, Y. Ishimaru, S. Toyama, Y. Ikariyama, T. Iida, Thermophilic glucokinase-based sensors for the detection of various saccharides and glycosides. Sens. Actuators, B 108(1), 727–732 (2005)

    Article  Google Scholar 

  • I. Bontidean, C. Berggren, G. Johansson, E. Csoregi, B. Mattiasson, J.R. Lloyd, K.J. Jakeman, N.L. Brown, Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Anal. Chem. 27(2), 355–384 (1998)

    Google Scholar 

  • C.E.D. Chidsey, C.R. Bertozzi, T.M. Putvinski, A.M. Mujsce, Co-adsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self assembled monolayers. J. Am. Chem. Soc. 112(11), 4301–4306 (1990)

    Article  Google Scholar 

  • S. Cho, S. Becker, H. von Briesen, H. Thielecke, Impedance monitoring of herpes simplex virus-induced cytopathic effect in Vero cells. Sens. Actuators, B 123(2), 978–982 (2007)

    Article  Google Scholar 

  • S. D’Auria, N. DiCesare, M. Staiano, Z. Gryczynski, M. Rossi, J.R. Lakowicz, A novel fluorescence competitive assay for glucose determinations by using a thermostable glucokinase from the Thermophilic Microorganism Bacillus stearothermophilus. Anal. Biochem. 303(2), 138–144 (2002)

    Article  Google Scholar 

  • Data sheet, Analog Device, Evaluation Board for the 1 MSPS 12-Bit Impedance Converter Network Analyzer, 2009, http://www.analog.com/static/importedfiles/eval_boards

  • J.H. Fendler, Chemical self-assembly for electronic applications. Chem Mater 13(2), 3196–3210 (2001)

    Article  Google Scholar 

  • E. Ghafar-Zadeh, M. Sawan, M. Hajj-Hassan, M.A. Miled, A CMOS based microfluidic detector: Design, calibration and experimental results. 50th Midwest Symposium on Circuits and Systems, (MWSCAS), Aug 2007

  • E. Ghafar-Zadeh, M. Sawan, D. Therriault, A microfluidic packaging technique for lab-on-chip applications. IEEE Trans. Adv. Packag. 32(2), 4110–4416 (2009)

    Article  Google Scholar 

  • C.T. Hsu, H.H. Chung, D.M. Tsai, M.Y. Fang, H.C. Hsiao, J.M. Zen, Fabrication of a glucose biosensor based on inserted barrel plating gold electrodes. Anal. Chem. 81(1), 515–518 (2009)

    Article  Google Scholar 

  • K. Kamta, M. Mitsuya, T. Nishimura, J. Eiki, Y. Nagata, Structural basis of allosteric regulation of the monimeric allosteric enzyme human glucokinase. Structure 12(13), 429–438 (2004)

    Article  Google Scholar 

  • M. Kao, The study of impedance spectroscopy for single cell analysis. Mater’s Thesis, Department of Electrical Engineering, National Cheng Kung University, 2006, http://etdncku.lib.ncku.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0820107-143736

  • D.S. Kim, Y.T. Jeong, H.J. Park, J.K. Shin, P. Choi, J.H. Lee, G. Lim, An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosens. Bioelectron. 20(1), 69–74 (2004)

    Article  Google Scholar 

  • G.B.B. Kristensen, K. Nerhus, G. Thue, S. Sandberg, Standardized evaluation of instruments for self-monitoring of blood glucose by patients and a technologist. Clin. Chem. 50(6), 1068–1071 (2004)

    Article  Google Scholar 

  • A. Li, F. Yang, Y. Ma, X. Yang, Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosens. Bioelectron. 22(8), 1716–1722 (2007)

    Article  Google Scholar 

  • R. Lumbroso, N. Naas, L.K. Beitel, M.F. Lawrence, M.A. Trifiro, Novel bioimpedance sensor for glucose recognition. IEEE Conference on Signals, Systems and Electronics (ISSE’07), (Montreal, 2007)

  • C.A. Marquette, M.F. Lawrence, L.J. Blum, DNA covalent immobilization onto screen-printed electrode networks for direct label-free. Anal. Chem. 78(3), 954–964 (2006)

    Article  Google Scholar 

  • J. Molnes, L. Bjorkhaug, O. Sovik, P.R. Njolstad, T. Flatmark, Catalytic activation of human glucokinase by substrate binding-residue contact involved in the binding of D-glucose to the super-open form and conformational transitions. FEBS J. 275(10), 2467–2481 (2008)

    Article  Google Scholar 

  • H.J. Park, S.K. Kim, K. Park, H.K. Lyu, C.S. Lee, S.J. Chung, W.S. Yun, M. Kim, B.H. Chung, An ISFET biosensor for the monitoring of maltose-induced conformational changes in MBP. FEBS Lett. 583(1), 157–162 (2009)

    Article  Google Scholar 

  • A. Rub, A. Rahman, G. Justin, A. Guiseppi-Elie, Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs). Biomed. Microdevices 11(1), 75–85 (2009)

    Article  Google Scholar 

  • A. Salimi, E. Sharifi, A. Noorbakhsh, S. Soltanian, Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity. Biosens. Bioelectron. 22(12), 3146–3153 (2007)

    Article  Google Scholar 

  • P. Seunghee, Y. Chung-Bang, D.J. Inman, A self-contained active sensor system for health monitoring of civil infrastructures. IEEE Conferences on Sensors (2005)

  • A. Shabani, M. Zourob, B. Allain, C.A. Marquette, M. Lawrence, R. Mandeville, Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal. Chem. 80(24), 9475–9482 (2008)

    Article  Google Scholar 

  • J.T. Sherman, M.R. DiSilvestro, M.A. Kryger, Method and apparatus for predicting the operating points of bone cement. US patent, 0154874 A1, (2005)

  • M. Staiano, P. Bazzicalupo, M. Rossi, S. D’Auria, Glucose biosensors as models for the development of advanced protein-based biosensors. Mol. Biosyst. 1, 354–362 (2005)

    Article  Google Scholar 

  • F. Tao, S.L. Bernasek, Understanding odd–even effects in organic self-assembled monolayers. Chem. Rev. 107(5), 1408–1453 (2007)

    Article  Google Scholar 

  • A. Trifiro, Glucose sensor and uses thereof. US patent, 0232370 A1, (2003)

  • A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96(4), 1533–1554 (1996)

    Article  Google Scholar 

  • L. Yi Jae Dae, P. Joon, P. Jae Yeong, Fully packaged nonenzymatic glucose microsensors with nanoporous platinum electrodes for anti-fouling. IEEE Sens. J. 8(11), 1922–1927 (2008)

    Article  Google Scholar 

  • L.G. Zhou, A.E.G. Cass, Periplasmic binding protein based biosensors. 1. Preliminary study of maltose binding protein as sensing element for maltose biosensor. Biosens. Bioelectron. 6(5), 445–450 (1991)

    Article  Google Scholar 

Download references

Acknowledgment

Authors would like to acknowledge support from NSERC Canada, FQRNT, and ReSMiQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghafar-Zadeh.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10544-010-9462-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghafar-Zadeh, E., Chowdhury, S.F., Aliakbar, A. et al. Handheld impedance biosensor system using engineered proteinaceous receptors. Biomed Microdevices 12, 967–975 (2010). https://doi.org/10.1007/s10544-010-9451-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9451-0

Keywords

Navigation