Skip to main content
Log in

Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The manipulation of biological cells is essential to many biomedical applications. Insulator-based dielectrophoresis (iDEP) trapping consists of insulating structures which squeeze the electric field in a conductive solution to create a non-uniform electric field. The iDEP trapping microchip with the open-top microstructures was designed and fabricated in this work. For retaining the merit of microfabrication, the microelectrodes were deposited on the substrate to reduce the voltage required, due to the shortened spacing between them. The dielectrophoretic responses of both live and dead HeLa cells under different frequencies (100 Hz, 1 kHz and 1 MHz) have been investigated herein. The live cells exhibited negative dielectrophoresis at low frequencies of 100 Hz and 1 kHz, but a positive dielectrophoretic response with the frequency at 1 MHz. As for dead cells, positive dielectrophoretic responses were shown at all the frequencies applied. Therefore, selective trapping of dead HeLa cells from live cells was achieved experimentally at the frequency of 1 kHz. The open-top microstructures are suitable for trapping cells or biological samples, and easily proceeding to further treatment for cells, such as culturing or contact detection. The intensity of the emitted light during fluorescent detection will not suffer interference by a cover, as it does not exist herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • K. Asami, Y. Takahashit, S. Takashima, Frequency domain analysis of membrane capacitance of cultured cells (HeLa and myeloma) using the micropipette technique Biophys. J. 58, 143–148 (1990)

    Article  Google Scholar 

  • I. Barbulovic-Nad, X. Xuan, J.S.H. Lee, D. Li, DC-dielectrophoresis separation of microparticles using an oil droplet obstacle Lab Chip 6, 274–279 (2006) doi:10.1039/b513183a

    Article  Google Scholar 

  • M. Berger, J. Castelino, R. Huang, M. Shah, R.H. Austin, Design of a microfabricated magnetic cell separator Electrophoresis 22, 3883–3892 (2001). doi:10.1002/1522-2683(200110)22:18<3883::AID-ELPS3883>3.0.CO;2-4

    Article  Google Scholar 

  • J.P.H. Burt, T.A.K. Al-Ameen, R. Pethig, An optical dielectrophoresis spectrometer for low-frequency measurements on colloidal suspensions J. Phys. E Sci. Instrum. 22, 952–957 (1989) doi:10.1088/0022-3735/22/11/011

    Article  Google Scholar 

  • J.P.H. Burt, R. Pethig, P.R.C. Gascoyne, F.F. Fecker, Dielectrophoretic characterisation of Friend murine erythroleukaemic cells as a measure of induced differentiation Biochim. Biophys. Acta 1034, 93–101 (1990)

    Google Scholar 

  • W.H. Chan, Y.J. Chang, Dosage effects of resveratrol on ethanol-induced cell death in the human K562 cell line Toxicol. Lett. 161(1), 1–9 (2006) doi:10.1016/j.toxlet.2005.07.010

    Article  Google Scholar 

  • P.Y. Chiou, A.T. Ohta, M.C. Wu, Massively parallel manipulation of single cells and microparticles using optical images Nature 436, 370–372 (2005) doi:10.1038/nature03831

    Article  Google Scholar 

  • C.F. Chou, Z. Frederic, Electrodeless dielectrophoresis for micro total analysis systems IEEE Eng. Med. Biol. Mag. 22(6), 62–67 (2003) doi:10.1109/MEMB.2003.1266048

    Article  Google Scholar 

  • C.F. Chou, J.O. Tegenfeldt, O. Bakajin, S.S. Chan, E.C. Cox, N. Darnton, T. Duke, R.H. Austin, Electrodeless dielectrophoresis of single-and double-stranded DNA Biophys. J. 83, 2170–2179 (2002)

    Article  Google Scholar 

  • N. Chronis, L.P. Lee, Electrothermally activated SU-8 microgripper for single cell manipulation in solution J. Microelectromech. Syst. 14(4), 857–863 (2005) doi:10.1109/JMEMS.2005.845445

    Article  Google Scholar 

  • J.J. Hawkes, R.W. Barber, D.R. Emerson, W.T. Coakley, Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel Lab Chip 4, 446–452 (2004) doi:10.1039/b408045a

    Article  Google Scholar 

  • T. Heida, W.L.C. Rutten, E. Marani, Dielectrophoretic trapping of dissociated fetal cortical rat neurons IEEE Trans. Biomed. Eng. 48(8), 921–930 (2001) doi:10.1109/10.936368

    Article  Google Scholar 

  • Y. Huang, R. Pethig, Electrode design for negative dielectrophoresis Meas. Sci. Technol. 2, 1142–1146 (1991) doi:10.1088/0957-0233/2/12/005

    Article  Google Scholar 

  • Y. Huang, R. Holzel, R. Pethig, X.B. Wang, Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies Phys. Med. Biol. 37, 1499–1517 (1992) doi:10.1088/0031-9155/37/7/003

    Article  Google Scholar 

  • A. Irimajiri, T. Hanai, A. Inouye, A dielectric theory of “multi-stratified shell” model with its application to a lymphoma cell J. Theor. Biol. 78, 251–269 (1979) doi:10.1016/0022-5193(79)90268-6

    Article  Google Scholar 

  • T.B. Jones, Electromechanics of particles (Cambridge University Press, New York, 1995)

    Google Scholar 

  • T.B. Jones, J.P. Kraybill, Active feedback-controlled dielectrophoretic levitation J. Appl. Phys. 60, 1247–1252 (1986) doi:10.1063/1.337345

    Article  Google Scholar 

  • B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, Y. Fintschenko, Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators Anal. Chem. 76, 1571–1579 (2004) doi:10.1021/ac034804j

    Article  Google Scholar 

  • H. Lee, Y. Liu, D. Ham, R.M. Westervelt, Integrated cell manipulation systems Appl. Phys. Lett. 85, 1063–1065 (2004) doi:10.1063/1.1776339

    Article  Google Scholar 

  • H. Li, R. Bashir, Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes Sens. Actuators B Chem. 86, 215–221 (2002) doi:10.1016/S0925-4005(02)00172-7

    Article  Google Scholar 

  • P. Marszalek, J.J. Zielinski, M. Fikus, Experimental verification of a theoretical treatment of the mechanism of dielectrophoresis Bioelectrochem. Bioenerg. 22, 289–298 (1989) doi:10.1016/0302-4598(89)87046-1

    Article  Google Scholar 

  • S. Masuda, M. Washizu, T. Nanba, Novel method of cell-fusion in field constriction area in fluid integrated-circuit IEEE Trans. Ind. Appl. 25, 732–737 (1989) doi:10.1109/28.31255

    Article  Google Scholar 

  • G.H. Markx, M.S. Talary, R. Pethig, Separation of viable and non-viable yeast using dielectrophoresis J. Biotechnol. 32, 29–37 (1994) doi:10.1016/0168-1656(94)90117-1

    Article  Google Scholar 

  • K. Park, D. Akin, R. Bashir, Electrical capture and lysis of vaccinia virus particles using silicon nano-scale probe array Biomed. Microdevices 9, 877–883 (2007) doi:10.1007/s10544-007-9101-3

    Article  Google Scholar 

  • R. Pethig, Dielectrophoresis of biological cells. in Encyclopedia of surface and colloid science, ed. by P. Somasundaran. (CRC, Boca Raton, 2006), pp. 1719–1736.

  • R. Pethig, D.B. Kell, The passive electrical properties of biological systems: their significance in physiology, biophysics, and biotechnology Phys. Med. Biol. 32, 933–970 (1987) doi:10.1088/0031-9155/32/8/001

    Article  Google Scholar 

  • R. Pethig, X.B. Wang, Y. Huang, J.P.H. Burt, Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes J. Phys. D Appl. Phys. 24, 881–888 (1992) doi:10.1088/0022-3727/25/5/022

    Article  Google Scholar 

  • H.A. Pohl, The motion and precipitation of suspensoids in divergent electric fields J. Appl. Phys. 22, 869–871 (1951) doi:10.1063/1.1700065

    Article  Google Scholar 

  • H.A. Pohl, Dielectrophoresis (Cambridge University Press, New York, 1978)

    Google Scholar 

  • H.A. Pohl, K. Pollock, Electrode geometries for various dielectrophoretic force laws J. Electrost. 5, 337–342 (1978) doi:10.1016/0304-3886(78)90028-1

    Article  Google Scholar 

  • C. Prinz, J.O. Tegenfeldt, R.H. Austin, E.C. Cox, J.C. Sturm, Bacterial chromosome extraction and isolation Lab Chip 2, 207–212 (2002) doi:10.1039/b208010a

    Article  Google Scholar 

  • A. Ramos, H. Morgan, G.N. Green, A. Castellanos, Ac electrokinetics: a review of forces in microelectrode structures J. Phys. D Appl. Phys. 31, 2338–2353 (1998) doi:10.1088/0022-3727/31/18/021

    Article  Google Scholar 

  • E. Rubin, H. Rottenberg, Ethanol-induced injury and adaptation in biological membranes Fed. Proc. 41(8), 2465–2471 (1982)

    Google Scholar 

  • J. Voldman, Electrical forces for microscale cell manipulation Annu. Rev. Biomed. Eng. 8, 425–454 (2006) doi:10.1146/annurev.bioeng.8.061505.095739

    Article  Google Scholar 

  • J. Voldman, R.A. Braff, M. Toner, M.L. Gray, M.A. Schmidt, Holding forces of single-particle dielectrophretic traps Biophys. J. 80, 531–541 (2001)

    Article  Google Scholar 

  • M. Yoshida, K. Tohda, M. Gratzl, Hydrodynamic micromanipulation of individual cells onto patterned attachment sites on biomicroelectromechanical system chips Anal. Chem. 75, 4686–4690 (2003) doi:10.1021/ac030055u

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the National Science Council of the Republic of China for financial support of this research under contract No. NSC-96-2221-E-194-053 and the National Center for High-performance Computing for computer time and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ping Jen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jen, CP., Chen, TW. Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures. Biomed Microdevices 11, 597–607 (2009). https://doi.org/10.1007/s10544-008-9269-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9269-1

Keywords

Navigation