Skip to main content
Log in

Electrosonic ejector microarray for drug and gene delivery

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We report on development and experimental characterization of a novel cell manipulation device—the electrosonic ejector microarray—which establishes a pathway for drug and/or gene delivery with control of biophysical action on the length scale of an individual cell. The device comprises a piezoelectric transducer for ultrasound wave generation, a reservoir for storing the sample mixture and a set of acoustic horn structures that form a nozzle array for focused application of mechanical energy. The nozzles are micromachined in silicon or plastic using simple and economical batch fabrication processes. When the device is driven at a particular resonant frequency of the acoustic horn structures, the sample mixture of cells and desired transfection agents/molecules suspended in culture medium is ejected from orifices located at the nozzle tips. During sample ejection, focused mechanical forces (pressure and shear) are generated on a microsecond time scale (dictated by nozzle size/geometry and ejection velocity) resulting in identical “active” microenvironments for each ejected cell. This process enables a number of cellular bioeffects, from uptake of small molecules and gene delivery/transfection to cell lysis. Specifically, we demonstrate successful calcein uptake and transfection of DNA plasmid encoding green fluorescent protein (GFP) into human malignant glioma cells (cell line LN443) using electrosonic microarrays with 36, 45 and 50 μm diameter nozzle orifices and operating at ultrasound frequencies between 0.91 and 0.98 MHz. Our results suggest that efficacy and the extent of bioeffects are mainly controlled by nozzle orifice size and the localized intensity of the applied acoustic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • K.A. Cunefare, S. Carter, patent 6447718, USPTO (USA, 2002)

  • E. Evans, V. Heinrich, F. Ludwig, W. Rawicz, Biophys. J. 85, 2342 (2003)

    Google Scholar 

  • M. Fechheimer, J.F. Boylan, S. Parker, J.E. Sisken, G.L. Patel, S.G. Zimmer, Proc. Natl. Acad. Sci. U. S. A. 84, 8463 (1987)

    Article  Google Scholar 

  • A.F. Fedorov, F.L. Degertekin, patent application 11/277,662, USPTO (USA, 2004)

  • FLUENT v. 6.2, FLUENT, Inc., Lebanon, NH (2006)

  • H.R. Guzman, D.X. Nguyen, S. Khan, M.R. Prausnitz, J. Acoust. Soc. Am. 110, 588 (2001a)

    Article  Google Scholar 

  • H.R. Guzman, D.X. Nguyen, S. Khan, M.R. Prausnitz, J. Acoust. Soc. Am. 110, 597 (2001b)

    Article  Google Scholar 

  • H.R. Guzman, D.X. Nguyen, A.J. McNamara, M.R. Prausnitz, J. Pharm. Sci. 91, 1693 (2002)

    Article  Google Scholar 

  • M. Lokhandwalla, B. Sturtevant, Phys. Med. Biol. 46, 413 (2001)

    Article  Google Scholar 

  • H. Lu, M.A. Schmidt, K.F. Jensen, Lab Chip. 5, 23 (2005)

    Article  Google Scholar 

  • J.M. Meacham, PhD Thesis: A micromachined ultrasonic droplet generator: Design, fabrication, visualization, and modeling (Mechanical Engineering, The Georgia Institute of Technology, Atlanta GA, 2006), pp. 181

  • J.M. Meacham, C. Ejimofor, S. Kumar, F.L. Degertekin, A.G. Fedorov, Rev. Sci. Instrum. 75, 1347 (2004)

    Article  Google Scholar 

  • J.M. Meacham, M.J. Varady, F.L. Degertekin, A.G. Fedorov, Phys. Fluids 17, 100605 (2005)

    Article  Google Scholar 

  • S. Mehier-Humbert, R.H. Guy, Adv. Drug Deliv. Rev. 57, 733 (2005)

    Article  Google Scholar 

  • D. Needham, R.S. Nunn, Biophys. J. 58, 997 (1990)

    Google Scholar 

  • K. Olbrich, W. Rawicz, D. Needham, E. Evans, Biophys. J. 79, 321 (2000)

    Google Scholar 

  • P. Piyasena, E. Mohareb, R.C. McKellar, Int. J. Food Microbiol. 87, 207 (2003)

    Article  Google Scholar 

  • R.K. Schlicher, H. Radhakrishna, T.P. Tolentino, R.P. Apkarian, V. Zarnitsyn, M.R. Prausnitz, Ultrasound Med. Biol. 32, 915 (2006)

    Article  Google Scholar 

  • J. Sundaram, B.R. Mellein, S. Mitragotri, Biophys. J. 84, 3087 (2003)

    Article  Google Scholar 

  • E.C. Unger, T. Porter, W. Culp, R. Labell, T. Matsunaga, R. Zutshi, Adv. Drug Deliv. Rev. 56, 1291 (2004)

    Article  Google Scholar 

  • J. Wolfe, M.F. Dowgert, P.L. Steponkus, J. Membr. Biol. 93, 63 (1986)

    Article  Google Scholar 

  • V. Zarnitsyn, M.R. Prausnitz, Ultrasound Med. Biol. 30, 527 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Mark Prausnitz and Dr. Andres Garcia for helpful discussions and access to their lab equipment, Dr. Daniel Hallow for helpful discussions and Dr. Beata Pyrzynska for help with establishing the human malignant glioma cell (cell line LN443) cultures at Georgia Tech. Support for this work by NSF (grant CTS-0323564) and NIH (grant RO1 EB000508-01A1) is also gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei G. Fedorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarnitsyn, V.G., Meacham, J.M., Varady, M.J. et al. Electrosonic ejector microarray for drug and gene delivery. Biomed Microdevices 10, 299–308 (2008). https://doi.org/10.1007/s10544-007-9137-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9137-4

Keywords

Navigation