Skip to main content
Log in

An electroporation microchip system for the transfection of zebrafish embryos using quantum dots and GFP genes for evaluation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This study focuses on the design and experimental verification of an electroporation (EP) microchip system for the transfection of zebrafish (Danio rerio). For generating suitable pulses, a circuit is used to provide voltages between 0 and 700 V, with nearly 0–3,500 V/cm electric field. In addition, a proposed EP microchip, designed in a modular fashion, is fabricated using micro electromechanical system (MEMS) technology to allow for rapid and convenient replacement of each component. A numerical simulation is carried out to analyze the uniformity and strength of the EP electric fields generated in the microchip. Trypan blue dye, water-soluble quantum dots (MUA-QDs) and genes coding for green fluorescence protein (pEGFP-N1 plasmids) were employed to verify the successful delivery and transfection of zebrafish embryos. The experimental results show that the optimum delivery rate of trypan blue dyes and MUA-QDs were respectively up to 62 and 36% by using the proposed EP system. The successfully transfected embryos with the pEGFP-N1 plasmid used exhibit green fluorescence in the zebrafish embryos. The approach in the transfection of zebrafish embryos will provide many potential usages for cellular imaging areas, gene therapy research and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • R. Abonour, D.A. Williams, L. Einhorn, K.M. Hall, J. Chen, J. Coffman, C.M. Traycoff, A. Bank, I. Kato, M. Ward, S.D. Williams, R. Hromas, M.J. Robertson, F.O. Smith, D. Woo, B. Mills, E.F. Srour, K. Cornetta, Nat. Med. 6, 652 (2000)

    Article  Google Scholar 

  • J. Aldana, Y.A. Wang, X. Peng, J. Am. Chem. Soc. 123, 8844 (2001)

    Article  Google Scholar 

  • F. André, L.M. Mir, Gene Ther. 11(suppl. 1), S33 (2004)

    Article  Google Scholar 

  • P.J. Canatella, M.R. Prausnitz, Gene Ther. 8, 1464 (2001)

    Article  Google Scholar 

  • P.Y. Chien, J. Wang, D. Carbonaro, S. Lei, B. Miller, S. Sheikh, S.M. Ali, M.U. Ahmad, I. Ahmad, Cancer Gene Ther. 12, 321 (2005)

    Article  Google Scholar 

  • V.P. Connaughton, D. Graham, R. Nelson, J. Comp. Neurol. 477, 377 (2004)

    Article  Google Scholar 

  • A.L. Coulberson, N.V. Hud, J.M. LeDoux, I.D. Vilfan, M.R. Prausnitz, J. Control. Release 86, 361 (2003)

    Article  Google Scholar 

  • B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber, Science 298, 1759 (2002)

    Article  Google Scholar 

  • P.L. Felgner, G.M. Ringold, Nature 337, 387 (1989)

    Article  Google Scholar 

  • J.A. Floyd, D.A. Gold, D. Concepcion, T.H. Poon, X.B. Wang, E. Keithley, D. Chen, E.J. Ward, S.B. Chinn, R.A. Friedman, H.T. Yu, K. Moriwaki, T. Shiroishi, B.A. Hamilton, Nat. Genet. 35, 221 (2003)

    Article  Google Scholar 

  • M.B. Gagne, F. Pothier, M.A. Sirard, Mol. Reprod. Dev. 29, 6 (1991)

    Article  Google Scholar 

  • J. Haensler, F.C. Szoka, Bioconjug. Chem. 4, 372 (1993)

    Article  Google Scholar 

  • K. Harbers, D. Jähner, R. Jaenisch, Nature 293, 540 (1981)

    Article  Google Scholar 

  • R. Heller, Science 295, 277 (letter) (2002)

    Article  Google Scholar 

  • Y. Huang, B. Rubinsky, Biomed Microdevices 22, 145 (1999)

    Article  Google Scholar 

  • K.S. Huang, C.C. Su, C.S. Fang, Y.C. Lin, Lab Chip 7, 86 (2007)

    Article  Google Scholar 

  • J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon, Nat. Biotechnol. 21, 47 (2003)

    Article  Google Scholar 

  • C.P. Jen, W.M. Wu, M. Li, Y.C. Lin, Journal of Microelectromechanical Systems 13, 947 (2004)

    Article  Google Scholar 

  • R.D. Jamieson, M.P. Bodger, P.S. Bodger, D. Baran, Science 136, 41 (1989)

    Google Scholar 

  • D.A. Larochelle, D. Epel, Dev. Biol. 148, 156 (1991)

    Article  Google Scholar 

  • M. Lavitrano, A. Camaioni, V.M. Fazio, S. Dolci, M.G. Farace, C. Spadafora, Cell 57, 717 (1989)

    Article  Google Scholar 

  • J.H. Lee, M.J. Welsh, Gene Ther. 6, 676 (1999)

    Article  Google Scholar 

  • M. Li, Y.C. Lin, K.C. Su, Mat. Sci. Forum 505–507, 661 (2006)

    Google Scholar 

  • Y.C. Lin, M.Y. Huang, J. Micromechanics Microengineering 11, 542 (2001)

    Article  MathSciNet  Google Scholar 

  • Y.C. Lin, C.M. Jen, M.Y. Huang, X.Z. Lin, Sens. Actuators, B, Chem. 79, 137 (2001)

    Article  Google Scholar 

  • Y.C. Lin, M. Li, C.S. Fan, L.W. Wu, Sens. Actuators, A, Phys. 108, 12 (2003)

    Article  Google Scholar 

  • Y.C. Lin, M. Li, C.C. Wu, Lab Chip 4, 104 (2004)

    Article  Google Scholar 

  • G. Marti, M. Ferguson, J. Wang, C. Byrnes, R. Dieb, R. Qaiser, P. Bonde, M.D. Duncan, J.W. Harmon, Gene Ther. 11, 1780 (2004)

    Article  Google Scholar 

  • J.M. McMahon, E. Signori, K.E. Wells, V.M. Fazio, D.J. Wells, Gene Ther. 8, 1264 (2001)

    Article  Google Scholar 

  • I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435 (2005)

    Article  Google Scholar 

  • O.J. Müller, F. Kaul, M.D. Weitzman, R. Pasqualini, W. Arap, J.A. Kleinschmidt, M. Trepel, Nat. Biotechnol. 21, 1040 (2003)

    Article  Google Scholar 

  • H. Nakamura, J.I. Funahashi, Methods 24, 43 (2001)

    Article  Google Scholar 

  • E. Neumann, M. Schaefer-Ridder, Y. Wang, P.H. Hofschneider, EMBO J. 1, 841 (1982)

    Google Scholar 

  • T. Nishi, K. Yoshizato, S. Yamashiro, H. Takeshima, K. Sato, K. Hamada, I. Kitamura, T. Yoshimura, H. Saya, J.I. Kuratsu, Y. Ushio, Cancer Res. 56, 1050 (1996)

    Google Scholar 

  • Z.A. Peng, X. Peng, J. Am. Chem. Soc. 123, 183 (2001)

    Article  Google Scholar 

  • D.A. Powers, V.L. Kirby, T. Cole, L. Hereford, Mol. Mar. Bio. Biotechnolog. 4, 369 (1995)

    Google Scholar 

  • K.M. Rambabu, S.H.N. Rao, N.M. Rao, BMC Biotechnol. 5, 29 (2005)

    Article  Google Scholar 

  • F. Scherer, M. Anton, U. Schillinger, J. Henkel, C. Bergemann, A. Kruger, B. Gansbacher, C. Plank, Gene Ther. 9, 102 (2002)

    Article  Google Scholar 

  • Y. Shamila, S. Mathavan, Arch. Insect Biochem. Physiol. 37, 168 (1998)

    Article  Google Scholar 

  • S.I. Sukharev, V.A. Klenchin, S.M. Serov, L.V. Chernomordik, Y.A. Chizmadzhev, Biophys. J. 63, 1320 (1992)

    Article  Google Scholar 

  • T. Tryfona, M.T. Bustard, Biotechnol. Bioeng. 93, 413 (2006)

    Article  Google Scholar 

  • M. Westerfield, The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) (Institute of Neuroscience, University of Oregon, 2000)

  • N.S. Yang, W.H. Sun, Nat. Med. 1, 481 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Center for Micro/Nano Technology Research, National Cheng Kung University, Tainan, Taiwan, R.O.C. for access to their equipment and for their technical support. Funding from the Ministry of Education and the National Science Council of Taiwan, R.O.C. under contract no. (NSC 95-2323-B-006-005, NSC 95-2323-B-006-006) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Cheng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, KS., Lin, YC., Su, KC. et al. An electroporation microchip system for the transfection of zebrafish embryos using quantum dots and GFP genes for evaluation. Biomed Microdevices 9, 761–768 (2007). https://doi.org/10.1007/s10544-007-9087-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9087-x

Keywords

Navigation