Skip to main content
Log in

DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Reports of DNA translocation measurements have been increasing rapidly in recent years due to advancements in pore fabrication and these measurements continue to provide insight into the physics of DNA translocations through MEMS based solid state nanopores. Specifically, it has recently been demonstrated that in addition to typically observed current blockages, enhancements in current can also be measured under certain conditions. Here, we further demonstrate the power of these nanopores for examining single DNA molecules by measuring these ionic currents as a function of the applied electric field and show that the direction of the resulting current pulse can provide fundamental insight into the physics of condensed counterions and the dipole saturation in single DNA molecules. Expanding on earlier work by Manning and others, we propose a model of DNA counterion ionic current and saturation of this current based on our experimental results. The work can have broad impact in understanding DNA sensing, DNA delivery into cells, DNA conductivity, and molecular electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S.M. Bezrukov, Journal of Membrane Biology 174, 1 (2000).

    Article  MathSciNet  Google Scholar 

  • H. Chang, F. Kosari, G. Andreadakis, M.A. Alam, G. Vasmatzis, and R. Bashir, Nano Letters 4, 1551 (2004).

    Article  Google Scholar 

  • H. Chang, S.M. Iqbal, E.A. Stach, A.H. King, N.J. Zaluzec, and R. Bashir, Applied Physics Letters 88, 103109 (2006).

    Article  Google Scholar 

  • P. Chen, T. Mitsui, D.B. Farmer, J. Golovchenko, R.G. Gordon, and D. Branton, Nano Letters 4, 1333 (2004).

    Article  Google Scholar 

  • P. Chen, J. Gu, E. Brandin, Y. Kim, Q. Wand, and D. Branton, Nano Letters 4, 2293 (2004).

    Article  Google Scholar 

  • S. Diekmann, W. Hillen, M. Jung, R.D. Wells, and D. Porschke, Biophysic Chemistry 15, 157 (1982).

    Article  Google Scholar 

  • S. Diekmann, M. Jung, and M.J. Teubner, Journal of Chemical Physics 80, 1259 (1984).

    Article  Google Scholar 

  • R. Fan, K. Rohit, M. Yue, D. Li, A. Majumdar, and P. Yang, Nano Letters 5, 1633 (2005).

    Article  Google Scholar 

  • D. Fologea, M. Gershow, B. Ledden, D.S. McNabb, J.A. Golovchenko, and J. Li, Nano Letters 5, 1905, (2005a).

    Article  Google Scholar 

  • D. Fologea, J. Uplinger, B. Thomas, D.S. McNabb, J. Li, Nano Letters 5, 1734 (2005b).

    Article  Google Scholar 

  • J.B. Heng, C. Ho, T. Kim, R. Timp, A. Aksimentiev, Y.V. Grinkova, S. Sligar, K. Schulten, and G. Timp, Biophysics Journal 87, 2905 (2004).

    Article  Google Scholar 

  • J.B. Heng, A. Aksimentiev, C. Ho, P. Marks, Y.V. Grinkova, S. Sligar, K. Schulten, and G. Timp, Nano Letters 5, 1883 (2005).

    Article  Google Scholar 

  • Y. Lansac, P.K. Maiti, and M.A. Glaser, Polymer 45, 3099 (2004).

    Article  Google Scholar 

  • J. Li, D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Nature 412, 166 (2001).

    Article  Google Scholar 

  • J. Li., M. Gershow, D. Stein, E. Brandin, and J.A. Golovchenko, Nature Materials 2, 611 (2003).

    Article  Google Scholar 

  • M. Mandel, Molecular Physics 4, 489 (1961).

    Article  Google Scholar 

  • G.S. Manning, Quarterly Reviews of Biophysics 11, 179 (1978).

    Article  Google Scholar 

  • G.S. Manning, Journal of Chemical Physics 99, 477 (1993).

    Article  Google Scholar 

  • R.R. Netz, Journal of Physical Chemistry B. 107, 8208 (2003).

    Article  Google Scholar 

  • B. O’;Shaughnessy, and Q. Yang, Physical Review Letters 94, 048302 (2005).

    Article  Google Scholar 

  • F. Oosawa, Polyelectrolytes, Marcel Dekker, New York (1971).

    Google Scholar 

  • D. Porschke, Biophysical Chemistry 22, 236 (1985).

    Article  Google Scholar 

  • R. Raiteri, B. Margesin, and M. Grattatola, Sensors and Actuators, B. 46, 126 (1998).

    Article  Google Scholar 

  • R.M.M. Smeets, U. Keyser, D. Krapf, M. Wu, N.H. Dekker, and C. Dekker, Nano Letters 6, 89 (2006).

    Article  Google Scholar 

  • A.J. Storm, J.H. Chen, X.S. Ling, H.W. Zandbergen, and C. Dekker, Nature Materials 2, 537 (2003).

    Article  Google Scholar 

  • A.J. Storm, J.H. Chen, H.W. Zandbergen, and C. Dekker, Physical Review E 71, 051903 (2005a).

    Article  Google Scholar 

  • A.J. Storm, J.H. Chen, H.W. Zandbergen, J-F. Joanny, and C. Dekker, Nano Letters 5, 1193 (2005b).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Bashir.

Additional information

H. C. and B. M. V. contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, H., Venkatesan, B.M., Iqbal, S.M. et al. DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor. Biomed Microdevices 8, 263–269 (2006). https://doi.org/10.1007/s10544-006-9144-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9144-x

Keywords

Navigation