Skip to main content
Log in

Design of a novel MEMS platform for the biaxial stimulation of living cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Micromechanical systems are increasingly being used as tools in biological applications, since their characteristic dimensions permit to operate at the same length scale of the structures under investigation. Here, we present a methodology for the design, fabrication and operation of a tool for the assessment of mechanical properties of single cells. In particular, we describe a microsystems platform to study bio-mechanical response of single living cells to in-plane biaxial stretching. The proposed device employs a new linkage design in order to obtain the displacement of the quadrants of a sliced circular plate in mutually-orthogonal directions using just one linear actuator. With this linkage geometry, the whole device has only one degree of freedom. This results in a very predictable and reliable mechanical behaviour, thereby allowing use a simple and easily available control electronics. Results of this study have relevance for the design of a powerful yet simple BioMEMS platform for the characterization of living cells as in-plane bi-axial loading simulated the conditions experienced by cells in vivo more realistically than a uniaxial stretching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K.L. Andersen and L.A. Norton, Journal of Biomechanics 24, 649–654 (1991).

    Article  Google Scholar 

  • G. Bao and S. Suresh, Nature Materials 21, 715–725 (2003).

    Article  Google Scholar 

  • K.A. Barbee and L.E. Thibault LE, IEEE Engineering in Medicine & Biology Society - llth Annual International Conference (1989).

  • M. Bottlang, M. Simnacher, H. Schmitt, R.A. Brand, and L. Claes, Biomedizinische Technik 42, 305–309 (1997).

    Article  Google Scholar 

  • C.T. Brighton, B. Strafford, S.B. Gross, D.F. Leatherwood, J.L. Williams, and S.R. Pollack, Journal of Bone and Joint Surgery 73A, 320–331 (1991).

    Google Scholar 

  • C.T. Brighton, B.J. Sennett, J.C. Farmer, J.P. Iannotti, C.A. Hansen, J.L. Williams, and J. Williamson, Journal of Orthopaedic Research 10, 385–393 (1992).

    Article  Google Scholar 

  • M.J. Bucklely, A.J. Banes, L.G. Lewin, B.E. Sumpio, M. Sato, R. Jordan, J. Gilbert, G.W. Link, and R. Tran Son Tay, Bone and Mineral 4, 225–236 (1988).

    Google Scholar 

  • J. Deutsch, D. Motlagh, B. Russell, and T.A. Desai, Journal of Biomedical Materials Research 53, 3:267–275 (2000).

    Article  Google Scholar 

  • Y.C. Fung, Biomechanics: Motion, Flow, Stress and growth (Springer, NY, 1990).

    MATH  Google Scholar 

  • Y.C. Fung, Biomechanics: mechanical properties of living tissues (2nd ed., Springer, NY, 1993).

    Google Scholar 

  • Y.C. Fung, Biomechanics: circulation (2nd ed., Springer NY, 1997).

    Google Scholar 

  • J.M. Gere and S. P. Timoshenko, Mechanics of Materials (Chapman & Hall, 1991).

  • J. Guck, H. Mahmood, T.J. Moon, C.C. Cunningham, and J. Käs, Biophysical Journal 81, 767–784 (2001).

    Google Scholar 

  • A. Harell, S. Dekel, and I. Binderman, Calcified Tissue Research 22, 202–207 (1977).

    Article  Google Scholar 

  • M.A. Horton, Biophysical Journal 82, 2970–2981 (2002).

    Article  Google Scholar 

  • C.T. Hung and J.L. Williams, Journal of Biomechanics 27, 227–232 (1994).

    Article  Google Scholar 

  • V.P. Jaecklin, N.F. de Rooij, and J.M. Moret, Journal of Micromechanics and Microengineering 2, 250–255 (1992).

    Article  Google Scholar 

  • D.B. Jones, H. Nolte, J.G. Scholuebbers, E. Turner, and D. Veltel, Biomaterials 12, 101–110 (1991).

    Article  Google Scholar 

  • D. Koester, R. Mahadevan, M. Stonefiled, and B. Hardy, Polymumps Design Handbook (2003).

  • G. Lin and K.P. Roos, Journal of Microelectromechanical Systems 9, 9–17 (2000).

    Article  Google Scholar 

  • C. Neidlinger-Wilke, H.J. Wilke, and L. Claes., Journal of Orthopaedic Research 12, 70–78 (1994).

    Article  Google Scholar 

  • H.V. Panchawagh, D. Serrell, D.S. Finch, T. Oreskovic, and R.L. Mahajan, 2005 ASME International Mechanical Engineering Congress and Exposition (2005).

  • D. Sameoto, T. Hubbard, and M. Kujath, Journal of Micromechanichs and Microengineering 14, 1359–1366 (2004).

    Article  Google Scholar 

  • D. Somjen, I. Binderman, E. Berger, and A. Harrel, Biochimica and Biophisica Acta 627, 91–100 (1980).

    Google Scholar 

  • M. Sotoudeh, S. Jalali, S. Usami, JY-J. Shyy, and S. Chien, Annals of Biomedical Engineering 26, 181–189 (1998).

    Article  Google Scholar 

  • T.L. Sounart, T.A. Michalske, and K.R. Zavadil, Journal of Microelectromechanical Systems 14, 125–133 (2005).

    Article  Google Scholar 

  • K.J. Van Vliet, G. Bao, and S. Suresh, Acta Materialia 51, 5881–5905 (2003).

    Article  Google Scholar 

  • S. Yang and T. Saif, International Conference on Microelectromechanical systems (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Scuor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scuor, N., Gallina, P., Panchawagh, H.V. et al. Design of a novel MEMS platform for the biaxial stimulation of living cells. Biomed Microdevices 8, 239–246 (2006). https://doi.org/10.1007/s10544-006-8268-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-8268-3

Keywords

Navigation