Skip to main content
Log in

Influence of segmenting fluids on efficiency, crossing point and fluorescence level in real time quantitative PCR

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The two-phase segmented flow approach to the processing and quantitative analysis of biological samples in microdevices offers significant advantages over the single-phase continuous flow methodology. Despite this, little is known about the compatibility of samples and reactants with segmenting fluids, although a number of investigators have reported reduced yield and inhibition of enzymatic reactions depending on the segmenting fluid employed. The current study addresses the compatibility of various segmenting fluids with real time quantitative PCR to understand the physicochemical requirements of this important reaction in biotechnology. The results demonstrate that creating a static segmenting fluid/PCR mix interface has a negligible impact on the reaction efficiency, crossing threshold and end fluorescence levels using a variety of segmenting fluids. The implication is then that the previously reported inhibitory effects are the result of the dynamic motion between the segmenting fluid and the sample in continuously flowing systems. The results presented here are a first step towards understanding the limitations of the segmented flow methodology, which are necessary to bring this approach into mainstream use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P.A. Auroux, Y. Koc, D. de Mello, A. Manz, and P.J.R. Day, Lab Chip 4, 534 (2004).

    Article  Google Scholar 

  • R.H. Austin and W.D.Volkmuth, Analysis 21, 235 (1993).

    Google Scholar 

  • J.R. Burns and C. Ramshaw, Lab on a Chip 1, 10 (2001).

    Article  Google Scholar 

  • A. M. Chaudhari, T. M. Woudenberg, M. Albin, and K. E. Goodson, J. Microelectromech. Syst. 7, 345 (1998).

    Article  Google Scholar 

  • V. Cristine and Y.C. Tan, Lab on a chip, 4, 257 (2004).

    Google Scholar 

  • M. Curcio and J. Roeraade, Anal. Chem. 75, 1 (2003).

    Article  Google Scholar 

  • K.D. Dorfman, M. Chabert, J-H. Codarbox, G. Rousseau, P. de Cremoux, and J-L. Viovy. Anal. Chem. 77, 3700 (2005).

    Article  Google Scholar 

  • J.P. Ferrance, Q.J. Wu, B.C. Giordano, H. Hernandez, Y. Kwok, K. Snow, S. Thibodeau, and J.P. Landers, Anal. Chim. Acta 500, 223 (2003).

    Article  Google Scholar 

  • S.P.A. Fodor, R.P. Rava, X.C. Huang, A.C. Pease, C.P. Holmes, and C.L. Adams, Nature 364, 555 (1993).

    Article  Google Scholar 

  • M. Gabig-Ciminska, A. Holmgren, H. Andresen, K.B. Barken, M. Wümpelmann, J. Albers, R. Hintsche, A. Breitenstein, P. Neubauer, M. Los, A. Czyz, G. Wegrzyn, G. Silfversparre, B. Jürgen, T. Schweder, and S.O. Enfors, Biosens. Bioelectron. 19, 537 (2004).

    Article  Google Scholar 

  • B.C. Giordano, E.R. Copeland, and J.P. Landers, Electrophoresis 22, 334 (2001).

    Article  Google Scholar 

  • A. Grodrian, J. Metze, T. Henkel, K. Martin, M. Roth, and J.M. Kohler, Biosensor and Bioelectronics 19, 1421 (2004).

    Google Scholar 

  • T. Hanaoka, O. Takai, K. Takahashi, and S. Tsugane, Biotechnol. Lett. 25, 509 (2003).

    Article  Google Scholar 

  • T. Henkel, T. Bermig, M. Kielpinski, A. Grodrian, J. Metze, and J.M. Kohler, Chem. Eng. J. 101, 439 (2004).

    Article  Google Scholar 

  • S. Hjerten, J. Chromatogr. 347, 191 (1985).

    Google Scholar 

  • L.R. Huang, E.C. Cox, R.H. Austin, and J.C. Sturm, Anal. Chem. 75, 6963 (2003).

    Google Scholar 

  • Y. Huang, J.M. Yang, P.J. Hopkins, S.K. Kassegne, M. Tirado, A.H. Forster, and H. Reese, Biomed. Microdev. 5, 217 (2003).

    Article  Google Scholar 

  • T.S. Hug, D. Parrat, P.-A. Kuenzi, U. Staufer, E. Verpoorte, and N.F. de Rooij, in Micro Total Analysis Systems 2003, edited by M.A. Northrup, K.F. Jensen, and D.J. Harrison (TRF, Squaw Valley, 2003) p. 29.

  • K. Jensen and A. Lee, Lab on a chip 4, 31N, (2004).

    Article  Google Scholar 

  • B.J. Kirby, A.R. Wheeler, R.N. Zare, J.A. Fruetel, and T.J. Shepodd, Lab Chip 3, 5 (2003).

    Article  Google Scholar 

  • J.M. Köhler, T. Henkel, A. Grodrian, T. Kirner, M. Roth, K. Martin, J. Metze, Chem. Eng. J. 101, 201 (2004).

    Google Scholar 

  • S. Lai, S. C. Wang, J. Luo, L. M. Lee, S.-T. Yang, and M. J. Madou, Anal. Chem. 76, 1832 (2004).

    Google Scholar 

  • J.H. Leamon, W.L. Lee, K.R. Tartaro, J.R. Lanza, G.J. Sarkis, A.D. deWinter, J. Berka, and K.L. Lohman, Electrophoresis 24, 3769 (2003).

    Article  Google Scholar 

  • D.S. Lee, S.H. Park, H. Yang, K.H. Chung, T.H. Yoon, S.J. Kim, K. Kim, and Y.T. Kim, Lab on a chip 4, 401 (2004).

    Article  Google Scholar 

  • D.R. Link, S.L. Anna, D.A. Weitz, and H.A. Stone, Phys. Rev. Letter. 92, Art. No. 054503 (2004).

  • E. Litborn, M. Curcio, A. Emmer, and J. Roeraade, Micro Total Analysis Systems 2000, edited by A. van den Berg (Kluwer, Dordrecht, The Netherlands, 2000), p. 447.

    Google Scholar 

  • R.H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, Anal. Chem. 76, 1824 (2004).

    Google Scholar 

  • M.A. Lopez-Quintela, C. Tojo, M.C. Blanco, L. Garcia Rio, J.R. Leis, Curr. Opin. Col. Int. Sci. 9, 264 (2004).

    Google Scholar 

  • C.A. Marquette and L.J. Blum, Anal. Chim. Acta 506, 127 (2004).

    Article  Google Scholar 

  • H. Nagai, Y. Murakami, Y. Morita, K. Yokoyama, and E. Tamiya, Anal. Chem. 73, 1043 (2001a).

    Article  Google Scholar 

  • H. Nagai, Y. Murakami, K. Yokoyama, and E. Tamiya, Biosens. Bioelectron. 16, 1015 (2001b).

    Article  Google Scholar 

  • M. Nakano, J. Komatsu, S. Matsuura, K. Takashima, S. Katsura, and A. Mizuno, J. Biotechnology 102, 117 (2003).

    Google Scholar 

  • T. Nisisako, T. Torii, and T. Higuchi, Lab on a Chip, 1, 24 (2002).

    Google Scholar 

  • P.J. Obeid and T.K. Christopoulos, Anal. Chim. Acta 494, 1 (2003).

    Article  Google Scholar 

  • N.J. Panaro, X.J. Lou, P. Fortina, L.J. Kricka, and P. Wilding, Biomedical Microdevices 6, 75 (2004).

    Article  Google Scholar 

  • N. Park, S. Kim, and J.H. Han, Anal. Chem. 75, 6029 (2003).

    Google Scholar 

  • S.R. Park and H. Swerdlow, Anal. Chem. 75, 4467 (2003).

    Google Scholar 

  • C. Ramakers, J.M. Ruijter, R.H.L. Deprez, and A.F.M. Moorman, Neurosci. Lett. 339, 62 (2003).

    Article  Google Scholar 

  • R.P. Rasmussen, in Rapid cycle real-time PCR: Methods and Applications, C.T. Wittwer, S. Meuer, K. Nakagawara, eds., (Springer Verlag, Heidelberg, 2001) p. 21.

    Google Scholar 

  • Roche Molecular Biochemicals, LightCycler Operator's Manual, Version 3.5, October 2000.

  • I. Schneegass and J.M. Kohler, Rev. Mol. Biotech. 82, 101 (2001).

    Google Scholar 

  • M.A. Shoffner, J. Cheng, G.E. Hvichia, L.J. Kricka, P. Wilding, Nucleic Acids Res. 24, 375 (1996).

    Article  Google Scholar 

  • Y.S. Shin, K. Cho, S.H. Lim, S. Chung, S.-J. Park, C. Chung, D.-C. Han, and J.K. Chang, J. Micromech. Microeng. 13, 768 (2003).

    Article  Google Scholar 

  • H. Song, J.D. Tice, R.F. Ismagilov, Angew. Chem. 115, 792 (2003).

    Google Scholar 

  • M.G. Song, J.H. Jho, J.Y. Kim, and J.D. Kim, J. Colloid Interface Sci 230, 213 (2000).

    Article  Google Scholar 

  • S. Song, A.K. Singh, T.J. Shepodd, and B.J. Kirby, Anal. Chem. 76, 2367 (2004).

    Google Scholar 

  • D.S. Tawfik and A.D. Griffiths, Nat. Biotechnology 16, 652 (1998).

    Google Scholar 

  • C.T. Wittwer, M.G. Herrmann, A.A. Moss, and R.P. Rasmussen, Biotechniques 22, 130 (1997).

    Google Scholar 

  • A.T. Woolley and R.A. Mathies, Proc. Natl Acad. Sci. USA 91, 11348 (1994).

    Google Scholar 

  • D. Xiao, T.V. Le and M.J. Wirth, Anal. Chem. 76, 2055 (2004).

    Article  Google Scholar 

  • W. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J.E. Gerbi, D.M. Gruen, T Knickerbocker, T.L. Lasseter, J.N. Russell, L.M. Smith, and R.J. Hamers, Nat. Materials 1, 253 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, E.J., King, C., Grimes, R. et al. Influence of segmenting fluids on efficiency, crossing point and fluorescence level in real time quantitative PCR. Biomed Microdevices 8, 59–64 (2006). https://doi.org/10.1007/s10544-006-6383-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-6383-9

Keywords

Navigation