Skip to main content
Log in

Microfluidic alignment of collagen fibers for in vitro cell culture

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Three dimensional gels of aligned collagen fibers were patterned in vitro using microfluidic channels. Collagen fiber orientation plays an important role in cell signaling for many tissues in vivo, but alignment has been difficult to realize in vitro. For microfluidic collagen fiber alignment, collagen solution was allowed to polymerize inside polydimethyl siloxane (PDMS) channels ranging from 10–400 μm in width. Collagen fiber orientation increased with smaller channel width, averaging 12 ± 6 degrees from parallel for channels between 10 and 100 μm in width. In these channels 20–40% of the fibers were within 5 degrees of the channel axis. Bovine aortic endothelial cells expressing GFP-tubulin were cultured on aligned collagen substrate and found to stretch in the direction of the fibers. The use of artificially aligned collagen gels could be applied to the study of cell movement, signaling, growth, and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H.A. Awad, D.L. Butler, G.P. Boivin, F.N. Smith and P. MalaviyaB. Huibregtse, and A.I. Caplan, Tissue Eng 5, 267–277 (1999).

    Google Scholar 

  • A.O. Brightman, B.P. Rajwa, J.E. Sturgis, M.E. McCallister and J.P. Robinsonand S.L. Voytik-Harbin,Biopolymers 54, 222–234 (2000).

    Google Scholar 

  • C.S. Chen, M. Mrksich, S. Huang and G.M. Whitesidesand D.E. Ingber, Science 276, 1425–1428 (1997).

    Google Scholar 

  • D.T. Chiu, N.L. Jeon, S. Huang, R.S. Kane and C.J. WargoI.S. Choi, D.E. Ingber, and G.M. Whitesides, Proc Natl Acad Sci USA 97, 2408–2413 (2000).

    Article  Google Scholar 

  • C.J. Connon and K.M. MeekWound Repair Regen 11, 71–78 (2003).

    Article  Google Scholar 

  • E. Cukierman, R. Pankov and D.R. Stevensand K.M. Yamada, Science 294, 1708–1712 (2001).

    Article  Google Scholar 

  • M.J. Dalby, M.O. Riehle, S.J. Yarwood and C.D. Wilkinsonand A.S. Curtis, Exp Cell Res 284, 274–282 (2003).

    Article  Google Scholar 

  • N. Dubey and P.C. Letourneauand R.T. Tranquillo, Exp Neurol 158, 338–350 (1999).

    Article  Google Scholar 

  • H.J. Evans, J.K. Sweet, R.L. Price and M. Yostand R.L. Goodwin, Am J Physiol Heart Circ Physiol 285, H570–578 (2003).

    Google Scholar 

  • A. Folch, A. Ayon, O. Hurtado and M.A. Schmidtand M. Toner, J Biomech Eng 121, 28–34 (1999).

    Google Scholar 

  • J. Glass-Brudzinski, D. Perizzolo and D.M. Brunette, J Biomed Mater Res 61, 608–618 (2002).

    Article  Google Scholar 

  • D. Grant, M. Cid and M.C. Kibbeyand H. Kleinman, Lab Invest 67, 805-806; author reply 807–808(1992).

  • L.G. Griffith Ann N Y Acad Sci 961, 83–95 (2002).

    Google Scholar 

  • S. Guido and R.T. TranquilloJ Cell Sci 105 (Pt 2), 317–331 (1993).

    Google Scholar 

  • K.E. Kadler, D.F. Holmes and J.A. Trotterand J.A. Chapman, Biochem J 316(Pt 1), 1–11 (1996).

    Google Scholar 

  • I. Kaverina and O. Krylyshkinaand J.V. Small, Int J Biochem Cell Biol 34, 746–761 (2002).

    Article  Google Scholar 

  • H.K. Kleinman, L. Luckenbill-Edds, F.W. Cannon and G.C. Sephel, Anal Biochem 166, 1–13(1987).

    Article  Google Scholar 

  • M. Kuzuya, S. Satake, M.A. Ramos, S. Kanda and T. KoikeK. Yoshino, S. Ikeda, and A. Iguchi, Exp Cell Res 248, 498–508 (1999).

    Article  Google Scholar 

  • N.L. Jeon, H. Baskaran, S.K. Dertinger, G.M. Whitesides and L. Van de Waterand M. Toner, Nat Biotechnol 20, 826–830 (2002).

    Google Scholar 

  • V.A. Liu and W.E. Jastromband S.N. Bhatia, J Biomed Mater Res 60, 126–134 (2002).

    Article  Google Scholar 

  • G.R. Martin and H.K. KleinmanHepatology 1, 264–266 (1981).

    Google Scholar 

  • N. Matsumoto, S. Horibe, N. Nakamura, T. Senda and K. Shinoand T. Ochi, Arch Orthop Trauma Surg 117, 215–221 (1998).

    Article  Google Scholar 

  • C. Miller and S. Jeftinijaand S. Mallapragada, Tissue Eng 7, 705–715 (2001).

    Article  Google Scholar 

  • C. Miller and S. Jeftinijaand S. Mallapragada, Tissue Eng 8, 367–378 (2002).

    Article  Google Scholar 

  • I. Nagata and A. Kawanaand N. Nakatsuji, Development 117, 401–408 (1993).

    Google Scholar 

  • B.A. Nasseri, I. Pomerantseva, M.R. Kaazempur-Mofrad, F.W. Sutherland, T. Perry E. Ochoa, C.A.Thompson, J.E. Mayer, Jr., S.N. Oesterle, and J.P. Vacanti, Tissue Eng 9, 291–299 (2003).

    Article  Google Scholar 

  • S. Newman, M. Cloitre, C. Allain and G. Forgacsand D. Beysens, Biopolymers 41, 337–347 (1997).

    Article  Google Scholar 

  • R.H. Newton and K.M. MeekBiophys J 75, 2508–2512 (1998).

    Google Scholar 

  • S.M. O'Connor, D.A. Stenger, K.M. Shaffer, and W. Ma, Neurosci Lett 304, 189–193 (2001).

    Article  Google Scholar 

  • T.J. O'Shaughnessy, H.J. Lin, and W. Ma, Neurosci Lett 340, 169–172 (2003).

    Article  Google Scholar 

  • G.D. Pins, D.L. Christiansen and R. Pateland F.H. Silver, Biophys J 73, 2164–2172 (1997).

    Google Scholar 

  • A. Rajnicek and S. Britlandand C. McCaig, J Cell Sci 110(Pt 23), 2905–2913 (1997).

    Google Scholar 

  • Z.M. Ruggeri Nat Med 8, 1227–1234 (2002).

    Article  Google Scholar 

  • J.P. Stegemann and R.M. NeremExp Cell Res 283, 146–155 (2003).

    Article  Google Scholar 

  • W. Tan and T.A. DesaiTissue Eng 9, 255–267 (2003).

    Article  Google Scholar 

  • R.G. Thakar, F. Ho, N.F. Huang and D. Liepmannand S. Li, Biochem Biophys Res Commun 307, 883–890 (2003).

    Article  Google Scholar 

  • O. Thoumine and R.M. Neremand P.R. Girard, Lab Invest 73, 565–576 (1995).

    Google Scholar 

  • T.T. Tower and M.R. Neidertand R.T. Tranquillo, Ann Biomed Eng 30, 1221–1233 (2002).

    Article  Google Scholar 

  • R.T. Tranquillo, T.S. Girton, B.A. Bromberek and T.G. Triebesand D.L. Mooradian, Biomaterials 17, 349–357 (1996).

    Article  Google Scholar 

  • A.K. Vogt, L. Lauer and W. Knolland A. Offenhausser, Biotechnol Prog 19, 1562–1568 (2003).

    Article  Google Scholar 

  • S.L. Voytik-Harbin, B. Rajwa and J.P. Robinson, Methods Cell Biol 63, 583–597 (2001).

    Google Scholar 

  • A. Webb, P. Clark, J. Skepper and A. Compstonand A. Wood, J Cell Sci 108 (Pt 8), 2747–2760 (1995).

    Google Scholar 

  • B. Wojciak-Stothard, A. Curtis, W. Monaghan, K. MacDonald and C. Wilkinson, Exp Cell Res 223, 426–435 (1996).

    Google Scholar 

  • M. Yoshinari, K. Matsuzaka, T. Inoue and Y. Odaand M. Shimono, J Biomed Mater Res A 65, 359–368(2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke P. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, P., Lin, R., Moon, J. et al. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed Microdevices 8, 35–41 (2006). https://doi.org/10.1007/s10544-006-6380-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-6380-z

Keywords

Navigation