Skip to main content
Log in

Self-Assembled Three Dimensional Radio Frequency (RF) Shielded Containers for Cell Encapsulation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper describes the construction of three dimensional (3D) encapsulation devices in large numbers, using a novel self-assembling strategy characterized by high mechanical stability, controlled porosity, extreme miniaturization, high reproducibility and the possibility of integrating sensing and actuating electromechanical modules. We demonstrated encapsulation of microbeads and cells within the containers, thereby demonstrating one possible application in cell encapsulation therapy. Magnetic resonance (MR) images of the containers in fluidic media suggest radio frequency (RF) shielding and a susceptibility effect, providing characteristic hypointensity within the container, thereby allowing the containers to be easily detected. This demonstration is the first step toward the design of 3D, micropatterned, non-invasively trackable, encapsulation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Aebischer, P.A. Tresco, S.R. Winn, L.A. Greene, and C.B. Jaeger, Exp. Neurol. 111, 269 (1991).

    Article  Google Scholar 

  • L.W. Bartels, H.F. Smits, C.J. Bakker, and M.A. Viergever, J. Vasc. Interv. Radiol. 12, 365 (2001).

    Google Scholar 

  • R. Cailleau, R. Young, M. Olive, and W.J. Reeves, Jr., J. Natl. Cancer Inst. 53, 661 (1974).

    Google Scholar 

  • T.M.S. Chang, Nat. Rev. Drug Discov. 4, 221 (2005).

    Article  Google Scholar 

  • T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, and M. Ferrari, Biotechnol. Bioeng. 57, 118 (1997).

    Google Scholar 

  • B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, and G.M. Whitesides, Chem. Rev. 105, 1171 (2005).

    Article  Google Scholar 

  • D.H. Gracias, V. Kavthekar, J.C. Love, K.E. Paul, and G.M. Whitesides, Adv. Mater. 14, 235 (2002).

    Article  Google Scholar 

  • K.F. Harsh, V.M. Bright, and Y.C. Lee, Sens. Actuators A 77, 237 (1999).

    Google Scholar 

  • E.E. Hui, R.T. Howe, and M.S. Rodgers, IEEE 13th Int. Conf. Microelectromech. Syst., 602 (2000).

  • E.E. Johnston, J.D. Bryers, and B.D. Ratner, Langmuir 2005, 870 (2005).

    Google Scholar 

  • C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).

    Google Scholar 

  • J. Kost and R. Langer, Adv. Drug Deliv. Rev. 46, 125 (2001).

    Article  Google Scholar 

  • R.P. Lanza, J.L. Hayes, and W.L. Chick, Nat. Biotech. 14, 1107 (1996).

    Google Scholar 

  • L. Leoni and T.A. Desai, Adv. Drug Deliv. Rev. 56, 211 (2004).

    Article  Google Scholar 

  • G. Lesinski, S. Sharma, K. Varker, P. Sinha, M. Ferrari, and W. Carson, Biomed. Microdevices 7, 71 (2005).

    Article  Google Scholar 

  • F. Lim and A.M. Sun, Science 210, 908 (1980).

    Google Scholar 

  • M.J. Madou, Fundamentals of Microfabrication. 2nd ed (CRC Press, Boca Raton, Fla., 2002).

    Google Scholar 

  • G. Orive, R.M. Hernandez, A.R. Gascon, M. Igartua, and J.L. Pedraz, Trends Biotech. 20, 382 (2002).

    Google Scholar 

  • G.M. O'Shea and A.M. Sun, Diabetes 35, 943 (1986).

    Google Scholar 

  • E. Ostuni, R.G. Chapman, M.N. Liang, G. Meluleni, G. Pier, D.E. Ingber, and G.M. Whitesides, Langmuir 17, 6336 (2001).

    Google Scholar 

  • T. Pizzorusso, V. Porciatti, J.L. Tseng, P. Aebischer, and L. Maffei, Neuroscience 80, 307 (1997).

    Google Scholar 

  • B. Rihova, Adv. Drug Deliv. Rev. 42, 65 (2000).

    Google Scholar 

  • Y. Sagot, S.A. Tan, E. Baetge, H. Schmalbruch, A.C. Kato, and P. Aebischer, Eur. J. Neurosci. 7, 1313 (1995).

    Google Scholar 

  • J.T. Santini, M.J. Cima, and R. Langer, Nature 97, 335 (1999).

    Google Scholar 

  • B.A. Schueler, T.B. Parrish, J.C. Lin, B.E. Hammer, B.J. Pangrle, E.R. Ritenour, J. Kucharczyk, and C.L. Truwit, J. Magn. Reson. Imaging 9, 596 (1999).

    Article  Google Scholar 

  • A. Shenhav and H. Azhari, Magn. Reson. Med. 52, 1465 (2004).

    Article  Google Scholar 

  • P. Sinha, G. Valco, S. Sharma, X. Liu, and M. Ferrari, Nanotechnology 15, 585 (2004).

    Article  Google Scholar 

  • R.R.A. Syms, E.M. Yeatman, V.M. Bright, and G.M. Whitesides, J. Microelectromech. Syst. 387 (2003).

  • A. Terfort, N. Bowden, and G.M. Whitesides, Nature 86, 162 (1997).

    Google Scholar 

  • R.H. Thomlinson and L.H. Gray, Br. J. Cancer 9, 539 (1955).

    Google Scholar 

  • A.B. Tsaliovich, Electromagnetic Shielding Handbook for Wired and Wireless EMC Applications (Kluwer Academic, Boston, 1999).

    Google Scholar 

  • R.J. Walczak, A. Boiarski, M. Cohen, T. West, K. Melnik, J. Shapiro, S. Sharma, and M. Ferrari, NanoBiotech. 1, 35 (2005).

    Google Scholar 

  • G.M. Wallraff and W.D. Hinsberg, Chem. Rev. 99, 1801 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Gracias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gimi, B., Leong, T., Gu, Z. et al. Self-Assembled Three Dimensional Radio Frequency (RF) Shielded Containers for Cell Encapsulation. Biomed Microdevices 7, 341–345 (2005). https://doi.org/10.1007/s10544-005-6076-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-005-6076-9

Keywords

Navigation