Skip to main content
Log in

Symmetric general linear methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The article considers symmetric general linear methods, a class of numerical time integration methods which, like symmetric Runge–Kutta methods, are applicable to general time-reversible differential equations, not just those derived from separable second-order problems. A definition of time-reversal symmetry is formulated for general linear methods, and criteria are found for the methods to be free of linear parasitism. It is shown that symmetric parasitism-free methods cannot be explicit, but such a method of order 4 is constructed with only one implicit stage. Several characterizations of symmetry are given, and connections are made with G-symplecticity. Symmetric methods are shown to be of even order, a suitable symmetric starting method is constructed and shown to be essentially unique. The underlying one-step method is shown to be time-symmetric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Butcher, J.C.: The equivalence of algebraic stability and \(AN\)-stability. BIT 27, 510–533 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Butcher, J.C., Habib, Y., Hill, A.T., Norton, T.J.T.: The control of parasitism in \(G\)-symplectic methods. SIAM J. Numer. Anal. 52, 2440–2465 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cano, B., Sanz-Serna, J.M.: Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems. IMA J. Numer. Anal. 18, 57–75 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cowell, P.H., Crommelin A.C.D.: Investigations in the motion of Halley’s comet from 1759 to 1910. Appendix to Greenwich Observations for 1909, Edinburgh, pp. 1–84 (1910)

  5. D’Ambrosio, R., Hairer, E.: Long-term stability of multi-value methods for ordinary differential equations. J. Sci. Comput. 60, 627–640 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4, 33–53 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Trans. Royal Inst. Techn., Stockholm, Sweden, vol. 130 (1959)

  8. Eirola, T., Sanz-Serna, J.M.: Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods. Numer. Math. 61, 281–290 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faou, E., Hairer, E., Pham, T.-L.: Energy conservation with non-symplectic methods: examples and counter-examples. BIT 44, 699–709 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hairer, E.: Symmetric linear multistep methods. BIT 46, 515–524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hairer, E., Lubich, C.: Symmetric multistep methods over long times. Numer. Math. 97, 699–723 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations. Spinger Verlag, Berlin (2002)

    MATH  Google Scholar 

  13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Spinger Verlag, Berlin (2006)

    MATH  Google Scholar 

  14. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Spinger Verlag, Berlin (1993)

    MATH  Google Scholar 

  15. Hairer, E., Stoffer, D.: Reversible long-term integration with variable step-sizes. SIAM J. Sci. Comput. 18, 257–269 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hill, A.T.: Nonlinear stability of geneal linear methods. Numer. Math. 103, 611–629 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hundsdorfer, W.H., Spijker, M.N.: A note on B-stability of Runge–Kutta methods. Numer. Math. 36, 319–331 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kirchgraber, U.: Multi-step methods are essentially one-step methods. Numer. Math. 48, 85–90 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. McLachlan, R.: On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16, 151–168 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Murua, A., Sanz-Serna, J.M.: Order conditiond for numerical integrators obtained by composing simpler integrators. Phil. Trans. Roy. Soc. A 357, 1079–1100 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Quinlan, G.D., Tremaine, S.: Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    Article  Google Scholar 

  23. Sanz-Serna, J.M., Abia, L.: Order conditions for canonical Runge-Kutta schemes. SIAM J Numer. Anal. 28, 1081–1096 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stetter, H.J.: Analysis of Discretization Methods for Ordinary Differential Equations. Springer Verlag, Berlin (1973)

    Book  MATH  Google Scholar 

  25. Störmer, C.: Méthodes d’intégration numériquedes équations différentielles ordinaires. C.R. Congr. Intern. Math., Strasbourg, pp. 243–257 (1921)

  26. Stoffer, D.: On reversible and canonical integration methods. Research Report No. 88-05 SAM. ETH, Zürich (1988)

  27. Stoffer, D.: General linear methods: connection to one-step methods and invariant curves. Numer. Math. 64, 395–407 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146, 319–323 (1990)

    Article  MathSciNet  Google Scholar 

  29. Verlet, L.: Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  Google Scholar 

  30. Wanner, G.: Runge-Kutta methods with expansion in even powers of \(h\). Computing 11, 81–85 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

  32. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

JCB was supported by Marsden Grant AMC1101. ATH was assisted by LMS Grant 41125. TJTN was supported by a scholarship from EPSRC UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Butcher.

Additional information

Communicated by Christian Lubich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butcher, J.C., Hill, A.T. & Norton, T.J.T. Symmetric general linear methods. Bit Numer Math 56, 1189–1212 (2016). https://doi.org/10.1007/s10543-016-0613-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-016-0613-1

Keywords

Mathematics Subject Classification

Navigation