Skip to main content
Log in

A damped semismooth Newton method for the Brugnano–Casulli piecewise linear system

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The piecewise linear system is a nonsmooth but semismooth equation. In this paper, a damped semismooth Newton method is presented for solving a class of piecewise linear systems. Under appropriate conditions, both monotone convergence and finite termination properties are investigated for the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bear, J., Verruijt, A.: Modeling Groundwater Flow and Pollution. D. Reidel Publ. Co., Dordrecht (1987)

    Book  Google Scholar 

  2. Brugnano, L., Casulli, V.: Iterative solution of piecewise linear systems. SIAM J. Sci. Comput. 30, 463–472 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brugnano, L., Casulli, V.: Iterative solution of piecewise linear systems and applications to flows in porous media. SIAM J. Sci. Comput. 31, 1858–1873 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brugnano, L., Sestini, A.: Iterative solution of piecewise linear systems for the numerical solution of obstacle problems. J. Numer. Anal. Ind. Appl. Math. 6(3–4), 67–82 (2011)

    MathSciNet  Google Scholar 

  5. Casulli, V.: Semi-implicit finite difference methods for the two-dimensional shallow water equations. J. Comput. Phys. 86, 56–74 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Casulli, V.: A high resolution wetting and drying algorithm for free-surface hydrodynamics. Int. J. Numer. Methods Fluids 60, 391–408 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Casulli, V., Zanolli, P.: Iterative solutions of mildly nonlinear systems. J. Comput. Appl. Math. 236, 3937–3947 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, C.X., Hu, L.T., Wang, X.S.: Analysis of steady ground water flow toward wells in a confined-unconfined aquifer. Ground Water 44, 609–612 (2006)

    Article  Google Scholar 

  9. Chen, J.H., Agarwal, R.P.: On Newton-type approach for piecewise linear systems. Linear Algebra Appl. 433, 1463–1471 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38, 1200–1216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)

    MATH  Google Scholar 

  12. Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Springer, New York (1994)

  13. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    Article  MATH  Google Scholar 

  14. Hoppe, R.H.W.: Multigrid algorithms for variational inequalities. SIAM J. Numer. Anal. 24, 1046–1065 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kärkkäinen, T., Kunisch, K., Tarvainen, P.: Augmented Lagrangian active set methods for obstacle problems. J. Optim. Theory Appl. 119, 499–533 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, D.H., Fukushima, M.: Smoothing Newton and quasi-Newton methods for mixed complementarity problems. Comput. Optim. Appl. 17, 203–230 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, L., Lockington, D.A., Barry, D.A., Parlange, J.-Y., Perrochet, P.: Confined-unconfined flow in a horizontal aquifer. J. Hydrol. 271, 150–155 (2003)

    Article  Google Scholar 

  18. Lin, Y., Cryer, C.W.: An alternating direction implicit algorithm for the solution of linear complementarity problems arising from free boundary value problems. Appl. Math. Optim. 13, 1–17 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  20. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, San Diego (1970) [reprinted by SIAM, Philadelphia (2000)]

  21. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Scholtes, S.: Introduction to Piecewise Differentiable Equations. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  23. Sun, Z., Zeng, J.P., Li, D.H.: Semismooth Newton Schwarz iterative methods for the linear complementarity problem. BIT Numer. Math. 50, 425–449 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sun, Z., Zeng, J.P.: A damped semismooth Newton method for mixed linear complementarity problems. Optim. Methods Softw. 26, 187–205 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous referees and Prof. Michiel E. Hochstenbach for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Sun.

Additional information

Communicated by Michiel Hochstenbach.

The work was supported by the National Nature Science Foundation of P.R. China (No. 11126147, 11201197 and 11271069), the Nature Science Foundation of Jiangxi (No. 20132BAB211011), and the Foundation of Department of Education Jiangxi Province (No. GJJ13204).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Wu, L. & Liu, Z. A damped semismooth Newton method for the Brugnano–Casulli piecewise linear system. Bit Numer Math 55, 569–589 (2015). https://doi.org/10.1007/s10543-014-0514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0514-0

Keywords

Mathematics Subject Classification

Navigation