Skip to main content
Log in

A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We study preconditioned iterative methods for the linear systems arising in the numerical integration of ODEs and time-dependent PDEs by implicit Runge-Kutta and boundary value methods. A preconditioning strategy based on a Kronecker product splitting of the coefficient matrix is proposed, and some useful properties of the preconditioned matrix are established. Numerical examples are presented to illustrate the effectiveness of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bai, Z.Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix. Anal. Appl. 22, 603–626 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bertaccini, D.: A circulant preconditioner for the systems of LMF-based ODE codes. SIAM J. Sci. Comput. 22, 767–786 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertaccini, D.: Reliable preconditioned iterative linear solvers for some numerical integrators. Numer. Linear. Algebra. Appl. 8, 111–125 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertaccini, D., Ng, M.K.: The convergence rate of block preconditioned systems arising from LMF-based ODE codes. BIT 41, 433–450 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertaccini, D., Ng, M.K.: Band-Toeplitz preconditioned GMRES iterations for time-dependent PDEs. BIT 43, 901–914 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach Science Publishers, Amsterdam (1998)

    Google Scholar 

  7. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  8. Chan, R.H., Ng, M.K., Jin, X.: Strang-type preconditioners for systems of LMF-based ODE codes. IMA J. Numer. Anal. 21, 451–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential Algebraic Problems. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  10. Hoffmann, W., de Swart, J.J.B.: Approximating Runge-Kutta matrices by triangular matrices. BIT 37, 346–354 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  12. Iavernaro, F., Mazzia, F.: Solving ordinary differential equations by generalized Adams methods: properties and implementation techniques. Appl. Numer. Math. 28, 107–126 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iavernaro, F., Trigiante, D.: Preconditioning and conditioning of systems arising from boundary value methods. Nonlinear Dyn. Syst. Theory 1, 59–79 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Jay, L.O.: Inexact simplified Newton iterations for implicit Runge-Kutta methods. SIAM J. Numer. Anal. 38, 1369–1388 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jay, L.O., Braconnier, T.: A parallelizable preconditioner for the iterative solution of implicit Runge-Kutta type methods. J. Comput. Appl. Math. 111, 63–76 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Van Lent, J., Vandewalle, S.: Multigrid methods for implicit Runge-Kutta and boundary value method discretizations of PDEs. SIAM J. Sci. Comput. 27, 67–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mardal, K.-A., Nilssen, T.K., Staff, G.A.: Order optimal preconditioners for implicit Runge-Kutta schemes applied to parabolic PDEs. SIAM J. Sci. Comput. 29, 361–375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  20. Staff, G.A., Mardal, K.-A., Nilssen, T.K.: Preconditioning of full implicit Runge-Kutta schemes for parabolic PDEs. Model. Identif. Control. 27, 109–123 (2006)

    Article  MathSciNet  Google Scholar 

  21. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  22. Van der Houwen, P.J., de Swart, J.J.B.: Triangularly implicit iteration methods for ODE-IVP solvers. SIAM J. Sci. Comput. 18, 41–55 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, C.J., Chen, H., Wang, L.M.: Strang-type preconditioners applied to ordinary and neutral differential-algebraic equations. Numer. Linear. Algebra. Appl. 18, 843–855 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the referees for their constructive comments and valuable suggestions,which greatly improved the original manuscript of the paper. This work was supported by The National Natural Science Foundation (No. 11301575, No. 11171125 and No. 11201162), and the Program of Chongqing Innovation Team Project in University (No. KJTD201308), People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Additional information

Communicated by Anne Kværnø.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H. A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods. Bit Numer Math 54, 607–621 (2014). https://doi.org/10.1007/s10543-014-0467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0467-3

Keywords

Mathematics Subject Classification (2000)

Navigation