Skip to main content

Advertisement

Log in

A boundary preserving numerical algorithm for the Wright-Fisher model with mutation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The Wright-Fisher model is an Itô stochastic differential equation that was originally introduced to model genetic drift within finite populations and has recently been used as an approximation to ion channel dynamics within cardiac and neuronal cells. While analytic solutions to this equation remain within the interval [0,1], current numerical methods are unable to preserve such boundaries in the approximation. We present a new numerical method that guarantees approximations to a form of Wright-Fisher model, which includes mutation, remain within [0,1] for all time with probability one. Strong convergence of the method is proved and numerical experiments suggest that this new scheme converges with strong order 1/2. Extending this method to a multidimensional case, numerical tests suggest that the algorithm still converges strongly with order 1/2. Finally, numerical solutions obtained using this new method are compared to those obtained using the Euler-Maruyama method where the Wiener increment is resampled to ensure solutions remain within [0,1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcock, J., Burrage, K.: A note on the Balanced method. BIT Numer. Math. 46(4), 689–710 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berkaoui, A., Bossy, M., Diop, A.: Euler scheme for SDEs with non-Lipschitz diffusion coefficient: Strong convergence. ESAIM Probab. Stat. 12 (2008)

  3. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53(2), 385–407 (1985)

    Article  MathSciNet  Google Scholar 

  4. Dangerfield, C.E., Kay, D., Burrage, K.: Stochastic models and simulation of ion channel dynamics. Proc. Comput. Sci. 1(1), 1581–1590 (2010)

    Google Scholar 

  5. Ewens, W.J.: Mathematical Population Genetics, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  6. Fisher, R.A.: The Genetical Theory of Natural Selection. Clarendon, Oxford (1930)

    MATH  Google Scholar 

  7. Fox, R.: Stochastic versions of the Hodgkin-Huxley equations. Biophys. J. 72(5), 2068–2074 (1997)

    Article  Google Scholar 

  8. Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)

    Article  Google Scholar 

  9. Griffiths, R.: On the distribution of allele frequencies in a diffusion model. Theor. Popul. Biol. 15(1), 140–158 (1979)

    Article  MATH  Google Scholar 

  10. Griffiths, R.: Allele frequencies in multidimensional Wright-Fisher models with a general symmetric mutation structure. Theor. Popul. Biol. 17(1), 51–70 (1980)

    Article  MATH  Google Scholar 

  11. Halley, W., Malham, S.J.A., Wiese, A.: Positive stochastic volatility simulation (2008). ArXiv e-prints 0802.4411v1

  12. Halley, W., Malham, S.J.A., Wiese, A.: Positive and implicit stochastic volatility simulation (2009). ArXiv e-prints 0802.4411v2

  13. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Higham, D., Mao, X.: Convergence of Monte Carlo simulations involving the mean-reverting square root process. J. Comput. Finance 8, 35–61 (2005)

    Google Scholar 

  15. Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40(3), 1041–1063 (2003)

    Article  MathSciNet  Google Scholar 

  16. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(1), 500–544 (1952)

    Google Scholar 

  17. Kahl, C., Jäckel, P.: Fast strong approximation Monte Carlo schemes for stochastic volatility models. Quant. Finance 6(6), 513–536 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kahl, C., Schurz, H.: Balanced Milstein methods for ordinary SDEs. Technical report, Department of Mathematics, Southern Illinois University (2005)

  19. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  20. Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, New York (1981)

    MATH  Google Scholar 

  21. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, corrected edn. Stochastic Modelling and Applied Probability. Springer, Berlin (1992),

    MATH  Google Scholar 

  22. Lord, R., Koekkoek, R., Dijk, D.V.: A comparison of biased simulation schemes for stochastic volatility models. Quant. Finance 10(2), 177–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Melykuti, B., Burrage, K., Zygalakis, K.C.: Fast stochastic simulation of biochemical reaction systems by alternative formulations of the Chemical Langevin equation. J. Chem. Phys. 132(16), 164109 (2010)

    Article  Google Scholar 

  24. Milstein, G.N., Platen, E., Schurz, H.: Balanced implicit methods for stiff stochastic systems. SIAM J. Numer. Anal. 35(3), 1010–1019 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moro, E., Schurz, H.: Boundary preserving semianalytic numerical algorithms for stochastic differential equations. SIAM J. Sci. Comput. 29(4), 1525–1549 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ninomiya, S., Victoir, N.: Weak approximation of stochastic differential equations and application to derivative pricing. Appl. Math. Finance 15(2), 107–121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Noble, D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J. Physiol. 160, 317–352 (1962)

    Google Scholar 

  28. Pueyo, E., Corrias, A., Burrage, K., Rodriguez, B.: From ion channel fluctuations to the electrocardiogram. Implications for cardiac arrhythmogenesis. Biophys. J. (in press)

  29. Schurz, H.: Numerical regularization for SDE’s: Construction of nonnegative solutions. Dyn. Syst. Appl. 5, 323–352 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Wright, S.: Evolution in Mendelian populations. Genetics 16(2), 97–159 (1931)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Dangerfield.

Additional information

Communicated by Desmond Higham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dangerfield, C.E., Kay, D., MacNamara, S. et al. A boundary preserving numerical algorithm for the Wright-Fisher model with mutation. Bit Numer Math 52, 283–304 (2012). https://doi.org/10.1007/s10543-011-0351-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-011-0351-3

Keywords

Mathematics Subject Classification (2000)

Navigation