Skip to main content
Log in

A dynamical systems framework for intermittent data assimilation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, J., Anderson, S.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127, 2741–2758 (1999)

    Article  Google Scholar 

  2. Ascher, U., Huang, H., van den Doel, K.: Artificial time integration. BIT 47, 3–25 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ascher, U., van den Doel, K., Huang, H., Svaiter, B.: Gradient descent and fast artificial time integration. Modél. Math. Anal. Numér. 43, 689–708 (2009)

    Article  MATH  Google Scholar 

  4. Bain, A., Crisan, D.: Fundamentals of stochastic filtering. Stochastic modelling and applied probability, vol. 60. Springer, New York (2009)

    MATH  Google Scholar 

  5. Bergemann, K., Reich, S.: A localization technique for ensemble Kalman filters. Q. J. R. Meteorol. Soc. 136, 701–707 (2010)

    Article  Google Scholar 

  6. Bergemann, K., Reich, S.: A mollified ensemble Kalman filter. Q. J. R. Meteorol. Soc. 136, 1636–1643 (2010)

    Article  Google Scholar 

  7. Bloom, S., Takacs, L., Silva, A.D., Ledvina, D.: Data assimilation using incremental analysis updates. Q. J. R. Meteorol. Soc. 124, 1256–1271 (1996)

    Google Scholar 

  8. Burgers, G., van Leeuwen, P., Evensen, G.: On the analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126, 1719–1724 (1998)

    Article  Google Scholar 

  9. Crisan, D., Xiong, J.: Approximate McKean-Vlasov representation for a class of SPDEs. Stochastics 82, 53–68 (2010)

    MATH  MathSciNet  Google Scholar 

  10. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39B, 1–38 (1977)

    MathSciNet  Google Scholar 

  11. Evensen, G.: Data Assimilation. The Ensemble Kalman Filter. Springer, New York (2006)

    Google Scholar 

  12. Friedrichs, K.: The identity of weak and strong extensions of differential operators. Trans. Am. Math. Soc. 55, 132–151 (1944)

    MATH  MathSciNet  Google Scholar 

  13. Gardiner, C.: Handbook on Stochastic Methods, 3rd edn. Springer, New York (2004)

    Google Scholar 

  14. Gaspari, G., Cohn, S.: Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125, 723–757 (1999)

    Article  Google Scholar 

  15. Hamill, T., Whitaker, J., Snyder, C.: Distance-dependent filtering of background covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129, 2776–2790 (2001)

    Article  Google Scholar 

  16. Houtekamer, P., Mitchell, H.: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129, 123–136 (2001)

    Article  Google Scholar 

  17. Houtekamer, P., Mitchell, H.: Ensemble Kalman filtering. Q. J. R. Meteorol. Soc. 131, 3269–3289 (2005)

    Article  Google Scholar 

  18. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New York (2005)

    MATH  Google Scholar 

  19. Kepert, J.: Covariance localisation and balance in an ensemble Kalman Filter. Q. J. R. Meteorol. Soc. 135, 1157–1176 (2009)

    Article  Google Scholar 

  20. Leeuwen, P.V.: Particle filtering in geophysical systems. Mon. Weather Rev. 137, 4089–4114 (2009)

    Article  Google Scholar 

  21. Lei, L., Stauffer, D.: A hybrid ensemble Kalman filter approach to data assimilation in a two-dimensional shallow-water model. In: 23rd Conference on Weather Analysis and Forecasting/19th Conference on Numerical Weather Prediction, AMS Conference Proceedings, p. 9A.4. American Meteorological Society, Omaha (2009)

    Google Scholar 

  22. Lewis, J., Lakshmivarahan, S., Dhall, S.: Dynamic Data Assimilation: A Least Squares Approach. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  23. Øksendal, B.: Stochastic Differential Equations, 5th edn. Springer, Berlin (2000)

    Google Scholar 

  24. Simon, D.: Optimal State Estimation. Wiley, New York (2006)

    Book  Google Scholar 

  25. Smith, K.: Cluster ensemble Kalman filter. Tellus 59A, 749–757 (2007)

    Google Scholar 

  26. Tippett, M., Anderson, J., Bishop, G., Hamill, T., Whitaker, J.: Ensemble square root filters. Mon. Weather Rev. 131, 1485–1490 (2003)

    Article  Google Scholar 

  27. Villani, C.: Topics in Optimal Transportation. Am. Math. Soc., Providence (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Reich.

Additional information

Communicated by Uri Ascher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reich, S. A dynamical systems framework for intermittent data assimilation. Bit Numer Math 51, 235–249 (2011). https://doi.org/10.1007/s10543-010-0302-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0302-4

Keywords

Mathematics Subject Classification (2000)

Navigation