Skip to main content
Log in

On high order symmetric and symplectic trigonometrically fitted Runge-Kutta methods with an even number of stages

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The existence and construction of symplectic 2s-stage variable coefficients Runge-Kutta (RK) methods that integrate exactly IVPs whose solution is a trigonometrical polynomial of order s with a given frequency ω is considered. The resulting methods, that can be considered as trigonometrical collocation methods, are fully implicit, symmetric and symplectic RK methods with variable nodes and coefficients that are even functions of ν=ω h (h is the step size), and for ω→0 they tend to the conventional RK Gauss methods. The present analysis extends previous results on two-stage symplectic exponentially fitted integrators of Van de Vyver (Comput. Phys. Commun. 174: 255–262, 2006) and Calvo et al. (J. Comput. Appl. Math. 218: 421–434, 2008) to symmetric and symplectic trigonometrically fitted methods of high order. The algebraic order of the trigonometrically fitted symmetric and symplectic 2s-stage methods is shown to be 4s like in conventional RK Gauss methods. Finally, some numerical experiments with oscillatory Hamiltonian systems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastassi, Z.A., Simos, E.T.: Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep. 482–483, 1–240 (2009)

    Article  Google Scholar 

  2. Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Structure preservation of Exponentially Fitted Runge-Kutta methods. J. Comput. Appl. Math. 218, 421–434 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Coleman, J.P., Duxbury, S.C.: Mixed collocation methods for y ′′=f(x,y). J. Comput. Appl. Math. 126, 47–75 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)

    MATH  Google Scholar 

  6. Huang, N.S., Sidge, R.B., Cong, N.H.: On functionally fitted Runge-Kutta methods. BIT, Numer. Math. 46, 861–874 (2006)

    Article  Google Scholar 

  7. Huang, N.S., Sidge, R.B., Cong, N.H.: Analysis of trigonometric implicit Runge-Kutta methods. J. Comput. Appl. Math. 188, 187–207 (2007)

    Google Scholar 

  8. Ixaru, L.Gr., Vanden Berghe, G.: Exponential Fitting. Kluwer Academic, Dordrecht (2004)

    MATH  Google Scholar 

  9. Ortega, J.M., Rheinbolt, H.C.: Iterative Solution of Non-Linear Equations in Several Variables. Academic Press, San Diego (1970)

    Google Scholar 

  10. Ozawa, K.: A functional fitting Runge-Kutta method with variable coefficients. Jpn. J. Ind. Appl. Math. 18, 107–130 (2001)

    Article  MATH  Google Scholar 

  11. Paternoster, B.: Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials. Appl. Numer. Math. 28, 401–412 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  13. Simos, T.E.: An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 115, 1–8 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Simos, T.E., Vigo-Aguiar, J.: Exponentially fitted symplectic integrator. Phys. Rev. E 67, 016701 (2003)

    Article  MathSciNet  Google Scholar 

  15. Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted explicit Runge-Kutta methods. Comput. Phys. Commun. 123, 7–15 (1999)

    Article  MATH  Google Scholar 

  16. Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 125, 107–115 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Vanden Berghe, G., Ixaru, L.Gr., Van Daele, M.: Optimal implicit exponentially-fitted Runge-Kutta methods. Comput. Phys. Commun. 140, 346–357 (2001)

    Article  MATH  Google Scholar 

  18. Vanden Berghe, G., Van Daele, M., Van de Vyver, H.: Exponentially-Fitted Runge-Kutta methods of collocation type: fixed or variable knot points? J. Comput. Appl. Math. 159, 217–239 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Van Daele, M., Vanden Berghe, G.: Geometric numerical integration by means of exponentially fitted methods. Appl. Numer. Math. 57, 415–435 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Van de Vyver, H.: A fourth order symplectic exponentially fitted integrator. Comput. Phys. Commun. 174, 255–262 (2006)

    Article  Google Scholar 

  21. Vigo-Aguiar, J., Simos, T.E., Tocino, A.: An adapted symplectic integrator for Hamiltonian systems. Int. J. Mod. Phys. C 12, 225–234 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Franco.

Additional information

Communicated by Timo Eirola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvo, M., Franco, J.M., Montijano, J.I. et al. On high order symmetric and symplectic trigonometrically fitted Runge-Kutta methods with an even number of stages. Bit Numer Math 50, 3–21 (2010). https://doi.org/10.1007/s10543-010-0250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0250-z

Keywords

Mathematics Subject Classification (2000)

Navigation