Skip to main content
Log in

Local error estimates for moderately smooth problems: Part II—SDEs and SDAEs with small noise

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The paper consists of two parts. In the first part of the paper, we proposed a procedure to estimate local errors of low order methods applied to solve initial value problems in ordinary differential equations (ODEs) and index-1 differential-algebraic equations (DAEs). Based on the idea of Defect Correction we developed local error estimates for the case when the problem data is only moderately smooth, which is typically the case in stochastic differential equations. In this second part, we will consider the estimation of local errors in context of mean-square convergent methods for stochastic differential equations (SDEs) with small noise and index-1 stochastic differential-algebraic equations (SDAEs). Numerical experiments illustrate the performance of the mesh adaptation based on the local error estimation developed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, L.: Stochastische Differentialgleichungen. Oldenbourg, München (1973)

    MATH  Google Scholar 

  2. Baker, C.T.H., Buckwar, E.: Numerical analysis of explicit one-step methods for stochastic delay differential equations. LMS J. Comput. Math. 3, 315–335 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Buckwar, E., Winkler, R.: Multi-step methods for SDEs and their application to problems with small noise. SIAM J. Numer. Anal. 44(2), 779–803 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burrage, P.M., Burrage, K.: A variable stepsize implementation for stochastic differential equations. SIAM J. Sci. Comput. 24, 848–864 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Denk, G., Winkler, R.: Modeling and simulation of transient noise in circuit simulation. Math. Comput. Model Dyn. Syst. (MCMDS) 13(4), 383–394 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gaines, J.G., Lyons, T.J.: Variable stepsize control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57, 1455–1484 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hofmann, N., Müller-Gronbach, T., Ritter, K.: Optimal approximation of stochastic differential equations by adaptive step-size control. Math. Comput. 69, 1017–1034 (2000)

    MATH  Google Scholar 

  9. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)

    MATH  Google Scholar 

  10. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1999)

    Google Scholar 

  11. Lamba, H.: An adaptive timestepping algorithm for stochastic differential equations. J. Comput. Appl. Math. 161(2), 417–430 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mauthner, S.: Step size control in the numerical solution of stochastic differential equations. J. Comput. Appl. Math. 100, 93–109 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Milstein, G.N.: Theorem on the order of convergence for mean-square approximations of solutions of stochastic differential equations. Theory Probab. Appl. 32(4), 738–741 (1987). Translation from Teor. Veroyatn. Primen. 32(4), 809–811 (1987)

    Article  Google Scholar 

  14. Milstein, G.N.: Numerical Integration of Stochastic Differential Equations. Kluwer Academic, Dordrecht (1995). Translation from the Russian original of 1988

    Google Scholar 

  15. Milstein, G.N., Tretyakov, M.V.: Mean-square numerical methods for stochastic differential equations with small noise. SIAM J. Sci. Comput. 18, 1067–1087 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Penski, C.: A new numerical method for SDEs and its application in circuit simulation. J. Comput. Appl. Math. 115, 461–470 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Römisch, W., Winkler, R.: Stepsize control for mean-square numerical methods for stochastic differential equations with small noise. SIAM J. Sci. Comput. 28(2), 604–625 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sickenberger, T.: Mean-square convergence of stochastic multi-step methods with variable step-size. J. Comput. Appl. Math. 212(2), 300–319 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sickenberger, T., Weinmüller, E., Winkler, R.: Local error estimates for moderately smooth problems: Part I—ODEs and DAEs. BIT Numer. Math. 47(2), 157–187 (2007)

    Article  MATH  Google Scholar 

  20. Sickenberger, T., Winkler, R.: Adaptive methods for transient noise analysis. In: Ciuprina, G., Ioan, D. (eds.) Scientific Computing in Electrical Engineering SCEE 2006, pp. 403–410. Springer, Berlin (2007)

    Chapter  Google Scholar 

  21. Sickenberger, T., Winkler, R.: Efficient transient noise analysis in circuit simulation. In: Proceedings of the GAMM Annual Meeting 2006, Berlin, Proc. Appl. Math. Mech., vol. 6(1), pp. 55–58 (2006)

  22. Winkler, R.: Stochastic differential algebraic equations of index-1 and applications in circuit simulation. J. Comput. Appl. Math. 157(2), 477–505 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Weinmüller.

Additional information

Communicated by Gustaf Söderlind.

The first author acknowledges support by the BMBF-project 03RONAVN and the second author support by the Austrian Science Fund Project P17253.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sickenberger, T., Weinmüller, E. & Winkler, R. Local error estimates for moderately smooth problems: Part II—SDEs and SDAEs with small noise. Bit Numer Math 49, 217–245 (2009). https://doi.org/10.1007/s10543-009-0209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-009-0209-0

Keywords

Mathematics Subject Classification (2000)

Navigation