Skip to main content
Log in

Conservative solution of the Fokker–Planck equation for stochastic chemical reactions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The Fokker–Planck equation on conservation form modeling stochastic chemical reactions is discretized by a finite volume method for low dimensional problems and advanced in time by a linear multistep method. The grid cells are refined and coarsened in blocks of the grid depending on an estimate of the spatial discretization error and the time step is chosen to satisfy a tolerance on the temporal discretization error. The solution is conserved across the block boundaries so that the total probability is constant. A similar effect is achieved by rescaling the solution. The steady state solution is determined as the eigenvector corresponding to the zero eigenvalue. The method is applied to the solution of a problem with two molecular species and the simulation of a circadian clock in a biological cell. Comparison is made with a Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Barkai and S. Leibler, Circadian clocks limited by noise, Nature, 403 (2000), pp. 267–268.

    Google Scholar 

  2. H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 147–269.

    MathSciNet  Google Scholar 

  3. J. C. Dunlap, Molecular bases for circadian clocks, Cell, 96 (1999), pp. 271–290.

    Article  Google Scholar 

  4. M. Ehrenberg, J. Elf, E. Aurell, R. Sandberg, and J. Tegnér, Systems biology is taking off, Genome Res., 13 (2003), pp. 2377–2380.

    Article  Google Scholar 

  5. J. Elf, P. Lötstedt, and P. Sjöberg, Problems of high dimension in molecular biology, in High-dimensional Problems – Numerical Treatment and Applications, W. Hackbusch, ed., Proceedings of the 19th GAMM-Seminar Leipzig 2003, pp. 21–30, available at http://www.mis.mpg.de/conferences/gamm/2003/.

  6. J. Elf, J. Paulsson, O. G. Berg, and M. Ehrenberg, Near-critical phenomena in intracellular metabolite pools, Biophys. J., 84 (2003), pp. 154–170.

    Article  Google Scholar 

  7. L. Ferm and P. Lötstedt, Adaptive error control for steady state solutions of inviscid flow, SIAM J. Sci. Comput., 23 (2002), pp. 1777–1798.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Ferm and P. Lötstedt, Accurate and stable grid interfaces for finite volume methods, Appl. Numer. Math., 49 (2004), pp. 207–224.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. W. Gardiner, Handbook of Stochastic Methods, 2nd edn., Springer, Berlin, 2002.

  10. D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), pp. 403–434.

    Article  MathSciNet  Google Scholar 

  11. A. Golbeter, Computational approaches to cellular rhythms, Nature, 420 (2002), pp. 238–245.

    Article  Google Scholar 

  12. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations, 2nd edn., Springer, Berlin, 1993.

  13. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1992.

  14. R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.

  15. P. Lötstedt, S. Söderberg, A. Ramage, and L. Hemmingsson-Frändén, Implicit solution of hyperbolic equations with space-time adaptivity, BIT, 42 (2002), pp. 134–158.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Chapman & Hall, London, 1996.

  17. Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Thattai and A. van Oudenaarden, Intrinsic noise in gene regulatory networks, Proc. Natl. Acad. Sci., 98 (2001), pp. 8614–8619.

    Article  Google Scholar 

  19. J. M. G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler, Mechanisms of noise-resistance in genetic oscillators, Proc. Natl. Acad. Sci., 99 (2002), pp. 5988–5992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Lötstedt.

Additional information

Dedicated to Björn Engquist on the occasion of his 60th birthday.

AMS subject classification (2000)

65M20, 65M50

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferm, L., Lötstedt, P. & Sjöberg, P. Conservative solution of the Fokker–Planck equation for stochastic chemical reactions . Bit Numer Math 46 (Suppl 1), 61–83 (2006). https://doi.org/10.1007/s10543-006-0082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-006-0082-z

Key words

Navigation