Skip to main content
Log in

Approximation of Matrices and a Family of Gander Methods for Polar Decomposition

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Two matrix approximation problems are considered: approximation of a rectangular complex matrix by subunitary matrices with respect to unitarily invariant norms and a minimal rank approximation with respect to the spectral norm. A characterization of a subunitary approximant of a square matrix with respect to the Schatten norms, given by Maher, is extended to the case of rectangular matrices and arbitrary unitarily invariant norms. Iterative methods, based on the family of Gander methods and on Higham’s scaled method for polar decomposition of a matrix, are proposed for computing subunitary and minimal rank approximants. Properties of Gander methods are investigated in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ben-Israel and D. Cohen, On iterative computation of generalized inverses and associated projections, SIAM J. Numer. Anal., 3 (1966), pp. 410–419.

    Google Scholar 

  2. A. Ben-Israel and T. N. E. Greville, Generalized Inverses. Theory and Applications, Springer, New York, 2003.

  3. R. Bhatia, Some inequalities for norm ideals, Commun. Math. Phys., 111 (1987), pp. 33–39.

  4. R. Bhatia, Matrix Analysis, Springer, Berlin, 1996.

  5. Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.

  6. C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika 1 (1936), pp. 211–218.

  7. K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Natl. Acad. Sci. USA, 37 (1951), pp. 760–766.

    Google Scholar 

  8. K. Fan and A. Hoffman, Some metric inequalities in the space of matrices, Proc. Am. Math. Soc., 6 (1955), pp. 111–116.

    Google Scholar 

  9. W. Gander, Algorithms for the polar decomposition, SIAM J. Sci. Stat. Comput., 11 (1990), pp. 1102–1115.

  10. G. H. Golub, Least squares, singular values and matrix approximations, Aplikace Matematiky, 13 (1968), pp. 44–51.

    Google Scholar 

  11. P. R. Halmos, Spectral approximation of normal operators, Proc. Edinb. Math. Soc., II. Ser., 19 (1974), pp. 51–58.

  12. N. J. Higham, Computing the polar decomposition – with applications, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 1160–1174.

  13. N. J. Higham, Matrix nearness problem and applications, in Applications of Matrix Theory, M. J. C. Gover and S. Barnett, eds., pp. 1–27, Oxford University Press, Oxford, 1990.

  14. N. J. Higham, D. S. Mackey, N. Mackey, and F. Tisseur, Computing the polar decomposition and the matrix sign decomposition in matrix groups, SIAM J. Matrix Anal. Appl., 25 (2004), pp. 1178–1192.

    Google Scholar 

  15. N. J. Higham and R. S. Schreiber, Fast polar decomposition of an arbitrary matrix, SIAM J. Sci. Stat. Comput., 11 (1990), pp. 648–655.

    Google Scholar 

  16. R. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991.

  17. C. Kenney and A. J. Laub, On scaling Newton method for polar decomposition and the matrix sign function, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 688–706.

    Google Scholar 

  18. A. Kiełbasiński and K. Ziętak, Numerical behaviour of Higham’s scaled method for polar decomposition, Numer. Algorithms, 32 (2003), pp. 105–140.

  19. D. S. Mackey, N. Mackey, and F. Tisseur, Structured factorizations in scalar product spaces, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 821–850.

  20. P. J. Maher, Partially isometric approximation of positive operators, Illinois J. Math., 33 (1989), pp. 227–243.

    Google Scholar 

  21. P. J. Maher, Some matrix approximation problems arising from quantum chemistry, Proc. Indian Natl. Sci. Acad., 64 (1998), pp. 715–723.

  22. C. R. Rao, Matrix approximation and reduction of dimensionality in multivariate statistical analysis, in Multivariate Analysis V, Proc. of the Fifth Int. Symposium on Multivariate Analysis, pp. 3–22, North-Holland, Amsterdam, 1980.

  23. G. W. Stewart, Matrix Algorithms, Vol. I: Basic Decompositions, SIAM, Philadelphia, 1998.

  24. J.-G. Sun and C.-H. Chen, Generalized polar decomposition, Math. Numer. Sinica, 11 (1989), pp. 262–273 (in Chinese).

  25. P. Y. Wu, Approximation by partial isometries, Proc. Edinb. Math. Soc., 29 (1986), pp. 255–261.

  26. P. Zieliński and K. Ziętak, The polar decomposition – properties, applications and algorithms, Applied Mathematics, Ann. Pol. Math. Soc., 38 (1995), pp. 23–49.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Laszkiewicz or K. Ziętak.

Additional information

AMS subject classification (2000)

65F30, 15A18

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laszkiewicz, B., Ziętak, K. Approximation of Matrices and a Family of Gander Methods for Polar Decomposition. Bit Numer Math 46, 345–366 (2006). https://doi.org/10.1007/s10543-006-0053-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-006-0053-4

Key words

Navigation