Skip to main content
Log in

Martensen Splines

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the construction of the fundamental functions associated with a two-point Hermite spline interpolation scheme used by Martensen in the context of the remainder of the Gregory quadrature rule. We derive both a recursive construction and an explicit representation in terms of the underlying B-Splines which can easily be deduced using Marsden’s identity. We can make use of these functions in order to introduce a local interpolation scheme which reproduces all splines. Finally, we examine the error of this interpolant to a sufficiently smooth function and realize that it behaves like \(\mathcal{O}(h^{n+1})\) in the case of splines of degree n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Mathematics and its Applications, Kluwer, Dordrecht, 1993.

  2. W. Dahmen, T. N. T. Goodman, and C. A. Micchelli, Compactly supported fundamental functions for spline interpolation, Numer. Math., 52 (1988), pp. 639–664.

  3. C. de Boor and G. J. Fix, Spline approximation by quasiinterpolants, J. Approximation Theory, 8 (1973), pp. 19–45.

    Google Scholar 

  4. F.-J. Delvos, On Martensen splines, in Constructive Theory of Functions. Proceedings of the International Conference, Varna, Bulgaria, June 19–23, B. D. Bojanov, ed., DARBA, Sofia, 2003, pp. 233–238.

  5. G. Hämmerlin and K.-H. Hoffmann, Numerische Mathematik, Grundwissen Mathematik 7. Springer, Berlin–Heidelberg, 1991.

  6. S. Karlin and Z. Ziegler, Chebyshevian spline functions, SIAM J. Numer. Anal., 3 (1966), pp. 514–543.

  7. T. Lyche and L. L. Schumaker, Local spline approximation methods, J. Approximation Theory, 15 (1975), pp. 294–325.

  8. M. J. Marsden, An identity for spline functions with applications to variation diminishing spline approximation, J. Approximation Theory, 3 (1970), pp. 7–49.

    Google Scholar 

  9. E. Martensen, Darstellung und Entwicklung des Restgliedes der Gregoryschen Quadraturformel mit Hilfe von Spline-Funktionen, Numer. Math., 21 (1973), pp. 70–80.

  10. A. Mazroui, D. Sbibih, and A. Tijini, A recursive construction of Hermite spline interpolants and applications, J. Comput. Appl. Math., 183 (2005), pp. 67–83.

    Google Scholar 

  11. G. Opfer, Numerische Mathematik für Anfänger, Vieweg, Braunschweig, 2002.

  12. I. J. Schoenberg, Cardinal spline interpolation, CBMS-NSF Regional Conference Series in Applied Mathematics, 12, SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1973.

  13. M. H. Schultz, Spline Analysis, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Englewood Cliffs, NJ, 1973.

  14. L. L. Schumaker, Spline Functions: Basic Theory, Pure and Applied Mathematics. A Wiley-Interscience Publication, John Wiley & Sons, New York, 1981.

  15. G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Englewood Cliffs, NJ, 1973.

  16. R. Wait, A. R. Mitchell, Finite Element Analysis and Applications, John Wiley & Sons, Chichester, 1985.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Siewer.

Additional information

AMS subject classification (2000)

65D05, 65D07, 41A15

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siewer, R. Martensen Splines. Bit Numer Math 46, 127–140 (2006). https://doi.org/10.1007/s10543-006-0048-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-006-0048-1

Key words

Navigation