Skip to main content
Log in

Generation of Free Radicals during Decomposition of Hydroperoxide in the Presence of Myeloperoxidase or Activated Neutrophils

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It was shown with the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitrone that myeloperoxidase (MPO) in the presence of its substrates H2O2 and Cl as well as activated neutrophils destroy tert-butyl hydroperoxide producing two adducts of O-centered radicals which were identified as peroxyl and alcoxyl radicals. Inhibitory analysis performed with traps of hypochlorite (taurine and methionine), free radical scavengers (2,6-di-tret-butyl-4-methylphenol and mannitol), and MPO inhibitors (salicylhydroxamic acid and 4-aminobenzoic acid hydrazide) revealed that the destruction of the hydroperoxide group in the presence of isolated MPO or activated neutrophils was directly caused by the activity of MPO: some radical intermediates appeared as a result of the chlorination cycle of MPO at the stage of hypochlorite generation, whereas the other radicals were produced independently of hypochlorite, presumably with involvement of the peroxidase cycle of MPO. The data suggest that the activated neutrophils located in the inflammatory foci and secreting MPO into the extracellular space can convert hydroperoxides into free radicals initiating lipid peroxidation and other free radical reactions and, thus, promoting destruction of protein-lipid complexes (biological membranes, blood lipoproteins, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LPO:

lipid peroxidation

4-POBN:

α-(4-pyridyl-1-oxide)-N-tret-butylnitrone

EPR:

electron paramagnetic resonance

BHT:

2,6-di-tret-butyl-4-methylphenol

MPO:

myeloperoxidase

REFERENCES

  1. Halliwell, B., and Gutteridge, J. M. C. (1999) Free Radicals in Biology and Medicine, Oxford University Press.

  2. Vladimirov, Yu. A., and Archakov, A. I. (1972) Lipid Peroxidation in Biological Membranes [in Russian], Nauka, Moscow.

    Google Scholar 

  3. Kagan, V. E., Orlov, O. N., and Prilipko, L. L. (1986) Advances in Science and Technology. Ser. Biophysics [in Russian], Vol. 18, VINITI, Moscow, pp. 5–135.

    Google Scholar 

  4. Panasenko, O. M., Arnhold, J., and Sergienko, V. I. (2002) Biol. Membr. (Moscow), 19, 403–434.

    Google Scholar 

  5. Panasenko, O. M. (1997) BioFactors, 6, 181–190.

    PubMed  Google Scholar 

  6. Klebanoff, S. J., and Clark, R. A. (1978) The Neutrophil: Function and Clinical Disorders, Elsevier North Holland, Amsterdam.

    Google Scholar 

  7. Arnhold, J. (2004) Biochemistry (Moscow), 69, 4–9.

    Article  Google Scholar 

  8. Shafran, M. G. (1981) Usp. Sovr. Biol., 92, 365–379.

    PubMed  Google Scholar 

  9. Panasenko, O. M., Osipov, A. N., Chekanov, A. V., Arnhold, J., and Sergienko, V. I. (2002) Biochemistry (Moscow), 67, 880–888.

    Article  Google Scholar 

  10. Osipov, A. N., Panasenko, O. M., Chekanov, A. V., and Arnhold, J. (2002) Free Rad. Res., 36, 749–754.

    Article  Google Scholar 

  11. Zubarev, V. E. (1984) Spin Trap Approach. Application in Chemistry, Biology, and Medicine [in Russian], MGU Publishers, Moscow.

    Google Scholar 

  12. Boyum, A. (1964) Nature, 204, 793–794.

    PubMed  Google Scholar 

  13. Boyum, A. (1968) Scand. J. Clin. Lab. Invest., 21, 74–89.

    Google Scholar 

  14. Duling, D. R. (1994) J. Magn. Reson., B104, 105–110.

    Google Scholar 

  15. Kettle, A. J., and Winterbourn, C. C. (1994) Meth. Enzymol., 233, 502–512.

    PubMed  Google Scholar 

  16. Kettle, A. J., and Winterbourn, C. C. (1997) Red. Report, 3, 3–15.

    Google Scholar 

  17. Deby-Dupont, G., Deby, C., and Lamy, M. (1999) Intensivmed., 36, 500–513.

    Article  Google Scholar 

  18. Bakkenist, R. J., De Boer, J. E. G., Plat, H., and Wever, R. (1980) Biochim. Biophys. Acta, 613, 337–348.

    PubMed  Google Scholar 

  19. Kettle, A. J., and Winterbourn, C. C. (1991) Biochem. Pharmacol., 41, 1485–1492.

    Article  PubMed  Google Scholar 

  20. Osipov, A. N., Savov, V. M., Yax'yaev, A. V., Zubarev, V. E., Azizova, O. A., Kagan, V. E., and Vladimirov, Yu. A. (1984) Biofizika, 29, 533–536.

    PubMed  Google Scholar 

  21. Osipov, A. N., Moravskii, A. P., Shuvalov, V. F., Azizova, O. A., and Vladimirov, Yu. A. (1980) Biofizika, 25, 234–238.

    PubMed  Google Scholar 

  22. Furtmueller, P. G., Burner, U., Jantschko, W., Regelsberger, G., and Obinger, C. (2000) FEBS Lett., 484, 139–143.

    Article  PubMed  Google Scholar 

  23. Howard, J. A., and Ingold, K. U. (1968) J. Am. Chem. Soc., 90, 1056–1058.

    Article  Google Scholar 

  24. Rice-Evans, C., Leake, D., Bruckdorfer, K. R., and Diplock, A. T. (1996) Free Rad. Res., 25, 285–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Panasenko.

Additional information

__________

Translated from Biokhimiya, Vol. 70, No. 9, 2005, pp. 1209–1217.

Original Russian Text Copyright © 2005 by Panasenko, Chekanov, Arnhold, Sergienko, Osipov, Vladimirov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panasenko, O.M., Chekanov, A.V., Arnhold, J. et al. Generation of Free Radicals during Decomposition of Hydroperoxide in the Presence of Myeloperoxidase or Activated Neutrophils. Biochemistry (Moscow) 70, 998–1004 (2005). https://doi.org/10.1007/s10541-005-0215-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0215-z

Key words

Navigation