Skip to main content
Log in

A new alkalitolerant Yarrowia lipolytica yeast strain is a promising model for dissecting properties and regulation of Na+-dependent phosphate transport systems

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A newly isolated osmo-, salt-, and alkalitolerant Yarrowia lipolytica yeast strain is distinguished from other yeast species by its capacity to grow vigorously at alkaline pH values (9.7), which makes it a promising model organism for studying Na+-dependent phosphate transport systems in yeasts. Phosphate uptake by Y. lipolytica cells grown at pH 9.7 was mediated by several kinetically discrete Na+-dependent systems specifically activated by Na+. One of these, a low-affinity transporter, operated at high concentrations of extracellular phosphate. The other two, high-affinity systems, maximally active in phosphate-starved cells, were repressed or derepressed depending on the prevailing extracellular phosphate concentration and pH value. The contribution of Na+/Pi-cotransport systems to the total cellular phosphate uptake progressively increased with increasing pH, reaching its maximum at pH ≥ 9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAPS:

3-[cyclohexylamino]-1-propanesulfonic acid

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

DiOC6(3):

3,3’-dihexyloxacarbocyanine iodide

HPi:

high phosphate medium

LPi:

low phosphate medium

ER:

endoplasmic reticulum

REFERENCES

  1. F. M. Harold (1966) Bacteriol. Rev. 30 772–794

    Google Scholar 

  2. M. E. Lenburg E. K. O’Shea (1996) Trends Biochem. Sci. 21 383–387

    Google Scholar 

  3. Y. Oshima (1997) Gen. Genet. Syst. 72 323–334

    Google Scholar 

  4. B. L. Persson J. Petersson U. Fristedt R. Weinander A. Behre J. Pattison-Granberg (1999) Biochim. Biophys. Acta 142 255–272

    Google Scholar 

  5. J. O. Lagerstedt A. L. Kruckenberg J. A. Berden B. L. Persson (2000) NoChapterTitle S. Hohmann S. Nielsen (Eds) Molecular Biology and Physiology of Water and Solute Transport:Fundamental Research and Applied Aspects Kluwer/Plenum New York 405–414

    Google Scholar 

  6. B. L. Persson J. O. Lagerstedt J. R. Pratt J. Pattison-Granberg L. Kent S. Shokrollahzaden F. Kent (2003) Curr. Genet. 43 225–244

    Google Scholar 

  7. F. Giots M. C. V. Donaton J. M. Thevelein (2003) Mol. Microbiol. 47 1163–1181

    Google Scholar 

  8. G. W. F. H. Borst-Pauwels (1981) Biochim. Biophys. Acta 650 88–127

    Google Scholar 

  9. B. J. W. M. Nieuwenhuis G. W. F. H. Borst Pauwels (1984) Biochim. Biophys. Acta 770 40–46

    Google Scholar 

  10. Y. Tamai Y. Toh-e Y. Oshima (1985) J. Bacteriol. 164 964–968

    Google Scholar 

  11. D. D. Wykoff E. K. O’Shea (2001) Genetics 159 1491–1499

    Google Scholar 

  12. M. Bun-ya N. Nishimura S. Harashima Y. Oshima (1991) Mol. Cell. Biol. 11 3229–3238

    Google Scholar 

  13. M. Cockburn P. Earnshaw A. A. Eddy (1975) Biochem. J. 46 705–712

    Google Scholar 

  14. G. M. Roomans G. W. F. H. Borst-Pauwels (1979) Biochem. J. 178 521–527

    Google Scholar 

  15. Borst-Pauwels, G. W. F. H. (1993) Biochim. Biophys. Acta, 1152, 201–206.

    Google Scholar 

  16. A. Behre U. Fristedt B. L. Persson (1995) Eur. J. Biochem. 227 566–572

    Google Scholar 

  17. L. F. Bisson D. M. Coons A. L. Kruckenberg D. A. Lewis (1993) Crit. Rev. Biochem. Mol. Biol. 28 259–308

    Google Scholar 

  18. P. J. F. Henderson (1993) Curr. Opin. Cell. Biol. 5 708–721

    Google Scholar 

  19. S. Ozcan J. Dover A. G. Rosenwald S. Wolfi M. Jonston (1996) Proc. Natl. Acad. Sci. USA 93 12428–12432

    Google Scholar 

  20. A. Berhre B. Norling B. L. Persson (1996) Arch. Biochem. Biophys. 330 133–141

    Google Scholar 

  21. U. Fristedt R. Weinander H. S. Martinsson B. L. Persson (1999) FEBS Lett. 458 1–5

    Google Scholar 

  22. U. Fristedt M. Rest Particlevan Der B. Poolman W. N. Konings B. L. Persson (1999) Biochemistry 38 16010–16015

    Google Scholar 

  23. M. Bun-ya K. Shikata S. Nakade C. Yompakdee S. Harashima Y. Oshima (1996) Curr. Genet. 29 344–351

    Google Scholar 

  24. C. Yompakdee N. Ogawa S. Harashima Y. Oshima (1996) Mol. Gen. Genet. 251 580–590

    Google Scholar 

  25. M. Bun-ya S. Harashima Y. Oshima (1992) Mol. Cell. Biol. 12 2958–2966

    Google Scholar 

  26. W. T. Lau R. W. Howson P. Malkus R. Schekman E. K. O’Shea (2000) Proc. Natl. Acad. Sci. USA 97 1107 1112–1112

    Google Scholar 

  27. C. Yompakdee M. Bun-ya K. Shikata N. Ogawa S. Harashima Y. Oshima (1996) Gene 171 41–47

    Google Scholar 

  28. P. Martinez R. Zvyagilskaya P. Allard B. L. Persson (1998) J. Bacteriol. 180 2253–2256

    Google Scholar 

  29. J. Petersson J. Pattison A. L. Kruckenberg B. L. Persson (1999) FEBS Lett. 462 37–42

    Google Scholar 

  30. P. Martinez B. L. Persson (1998) Mol. Gen. Genet. 258 628–638

    Google Scholar 

  31. R. Zvyagilskaya E. Andreishcheva M. I. M. Soares I. Khozin A. Behre B. L. Persson (2001) J. Basic Microbiol. 41 289–303

    Google Scholar 

  32. R. Simon A. V. Abeliovich S. Belkin (1994) FEMS Microbiol. Ecol. 14 99–110

    Google Scholar 

  33. R. Zvyagilskaya P. Allard B. L. Persson (2000) IUBMB Life 49 143–147

    Google Scholar 

  34. R. Zvyagilskaya O. Parchomenko N. Abramova P. Allard T. Panaretakis J. Pattison Granberg B. L. Persson (2001) J. Membr. Biol. 183 39–50

    Google Scholar 

  35. R. Zvyagilskaya O. Parchomenko N. Abramova B. L. Persson (2000) IUBMB Life 50 151–155

    Google Scholar 

  36. A. D. Vinogradov Y. N. Leikin (1971) Biokhimiya 36 1061–1064

    Google Scholar 

  37. J. O. Lagerstedt R. Zvyagilskaya J. Pratt J. Pattison Granberg A. L. Kruckenberg J. A. Berden B. L. Persson (2002) FEBS Lett. 526 31–37

    Google Scholar 

  38. R. Zvyagilskaya B. L. Persson (2003) IUBMB Life 55 151–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Zvyagilskaya.

Additional information

Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1607–1615.

Original Russian Text Copyright © 2004 by Zvyagilskaya, Persson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zvyagilskaya, R.A., Persson, B.L. A new alkalitolerant Yarrowia lipolytica yeast strain is a promising model for dissecting properties and regulation of Na+-dependent phosphate transport systems. Biochemistry (Moscow) 69, 1310–1317 (2004). https://doi.org/10.1007/s10541-005-0016-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0016-4

Key words

Navigation