Skip to main content
Log in

Melatonin: New Places in Therapy

  • ORIGINAL PAPER
  • Published:
Bioscience Reports

Abstract

The fact that the full extent of the function of the pineal gland has not yet been elucidated, has stimulated melatonin research worldwide. This review introduces melatonin’s mechanism of action, direct and indirect antioxidant actions as well as the antioxidant properties of its metabolites, 6-hydroxymelatonin (6-OHM) and N-acetyl-N-formyl-5-methoxykynurenamine (AFMK). At present the mechanism of action is proposed to be receptor-, protein- and nonprotein-mediated. From its popular role in the treatment of jetlag, melatonin is now implicated in the reduction of oxidative stess, both as a free radical scavenger and antioxidant. Melatonin’s direct scavenging action in respect of the following will be discussed: superoxide anions, hydrogen peroxide, hydroxyl radicals, singlet oxygen, peroxy radicals and nitric oxide/peroxy nitrite anions. In addition melatonin also possesses indirect antioxidant activity and the role of its metabolites, AFMK and 6-OHM will be presented. It is these free radical scavenging and antioxidant properties of melatonin that has shifted the focus from that of merely strengthening circadian rhythms to that of neuroprotectant: a new place in therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

6-OHM:

6-hydroxymelatonin

AFMK:

N-acetyl-N-formyl-5-methoxykynurenamine

GPx:

Glutathione peroxidase

GRd:

Glutathione reductase

SOD:

Superoxide dismutase

NOS:

Nitic oxide synthase

CaCaM:

Ca2+-calmodulin

NO :

Nitric oxide

iNOS:

inducible Nitric oxide synthetase

OH:

Hydroxyl radical

\( {\text{O}}^{{ - \bullet }}_{{\text{2}}} \) :

Superoxide anions

H2O2 :

Hydrogen peroxide

CAT:

Catalase

THA:

Terephthalic acid

DHBA:

Dihydroxybenzoic acid

1O2:

Singlet oxygen

LOO :

Peroxyl radicals

ONOO :

Nitric oxide/peroxynitrite anions

G6PD:

Glucose-6-phosphate dehydrogenase

GSH:

Reduced glutathione

AD:

Alzheimers disease

PD:

Parkinsons disease

References

  • Acuña-Castroviejo D, Martin D, Macias M, Escames G, Leon J, Khaldy H, Reiter RJ (2001) Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 30L:65–74

    Google Scholar 

  • Albarran MT, Lopez-Burillo S, Pablos MI, Reiter RJ, Agapito MT (2001) Endogenous rhythms of melatonin, total antioxidant status and superoxide dismutase activity in several tissues of chick and their inhibition by light. J Pineal Res 30:227–233

    PubMed  CAS  Google Scholar 

  • Antolin I, Rodriguez C, Sainz RM, Mayo JC, Uria H, Kotler ML, Rodriguez-Colunga MJ, Tolivia D, Menéndez-Peláez A (1996) Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. FASEB J 10:882–890

    PubMed  CAS  Google Scholar 

  • Ardelt BK, Borowitz JL, Isom GE (1989) Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicology 56:147–154

    PubMed  CAS  Google Scholar 

  • Asayaam K, Yamadera H, Ito T, Suzuki H, Kudo Y, Endo S (2003) Double blind study of melatonin effects on the sleepwake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J Nippon Med Sch 70:334–341

    Google Scholar 

  • Barlow-Walden LR, Reiter RJ, Abe M, Pablos M, Menéndez-Peláez A, Chen LD, Poeggeler B (1995) Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 26:497–502

    PubMed  CAS  Google Scholar 

  • Barreto JC, Smith GS, Strobel NHP, McQuillin PA, Miller TA (1994) Terephthalic acid: a dosimeter for the detection of hydroxyl radicals in vitro. Life Sci 56:89–96

    Google Scholar 

  • Becker-André M, Wiesenberg I, Schaeren-Wienbers N, Andre E, Missbach M, Saurat JH, Carlberg C (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 269:28531–28534

    PubMed  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:427–437

    Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    PubMed  CAS  Google Scholar 

  • Benitz-King G (2000) PKC activation by melatonin modulates vimentin intermediate filament organization in N1E-115 cells. J Pineal Res 29:8–14

    Google Scholar 

  • Bettahi I, Pozo D, Osuna C, Reiter RJ, Acuna-Castroviejo D, Guerrero JM (1996) Melatonin reduces nitric oxide synthase activity in rat hypothalamus. J Pineal Res 20:205–210

    PubMed  CAS  Google Scholar 

  • Blanchard B, Pompon D, Ducroq C (2000) Nitrosation of melatonin by nitric oxide and peroxynitrite. J Pineal Res 29:184–192

    PubMed  CAS  Google Scholar 

  • Bliwise DL (2004) Sleep disorders in Alzheimer's disease and other dementias. Clin Cornerstone 6(Suppl 1A):16–28

    Google Scholar 

  • Bredth DS, Synder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87:682–685

    Google Scholar 

  • Bruguerolle B, Simon N (2002) Biologic rhythms and Parkinson's disease: a chronopharmacologic approach to considering fluctuations in function. Clin Neuropharmacol 25(4):194–201

    PubMed  Google Scholar 

  • Cagnoli CM, Atabay C, Kharlamova E, Manev H (1995) Melatonin protects neurons from singlet oxygen-induced apoptosis. J Pineal Res 18:222–226

    PubMed  CAS  Google Scholar 

  • Cardinali DP, Brusco LI, Liberczuk C, Furio AM (2002) The use of melatonin in Alzheimer's disease. Endocrinol Lett 23(Suppl 1):20–23

    CAS  Google Scholar 

  • Carlberg C, Wiesenberg I (1995) The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: an unexpected relationship. J Pineal Res 18:171–178

    PubMed  CAS  Google Scholar 

  • Chan TY, Tang PL (1996) Characterization of the antioxidant effects of melatonin and related indoleamines in vitro. J Pineal Res 20:187–191

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Conway S, Drew JE, Mowat ES, Barret P, Dela-Grange P, Morgan PJ (2000) Chimeric melatonin mt1 and melatonin-related receptors. Identification of domains and residues participating in ligand binding and receptor activation of the melatonin mt1 receptor. J Biol Chem 275:20602–20609

    PubMed  CAS  Google Scholar 

  • Costa EJX, Shida CS, Biaggi MH, Ito AS, Lamy-Freund MP (1997) How melatonin interacts with lipid bilayers: a study by fluorescence and ESR spectroscopies. FEBS Lett 416:103–106

    PubMed  CAS  Google Scholar 

  • Crespo E, Macias M, Pozo D, Escames G, Martin M, Vives F, Guerrero JM, Acuña-Castroviejo D (1999) Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J 13:1537–1546

    PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Reiter RJ (2001) Pharmacological action of melatonin in shock, inflammation and ischemia/reperfusion injury. J Pharmacol 426:1–10

    CAS  Google Scholar 

  • Cuzzocrea S, Costantino G, Caputi AP (1998) Protective effect of melatonin on cellular energy depletion mediated by peroxynitrite and poly (ADP-ribose) synthetase activation in a non-septic shock model induced by zymosan in the rat. J Pineal Res 25:78–85

    PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Zingarelli B, Gilad E, Hake P, Salzman AL, Szabo C (1997) Protective effect of melatonin in carrageenan-induced models of local inflammation: relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. J Pineal Res 23:106–116

    PubMed  CAS  Google Scholar 

  • de Almeida EA, Martinez GR, Klitzke CF, de Medeiros MH, Di. Mascio P (2003) Oxidation of melatonin by singlet molecular oxygen (O2 (1Dg)) produces N1-acetyl-N2-formyl-5-methoxykynuramine. J Pineal Res 35:131–7

    PubMed  Google Scholar 

  • Dijk KDJ, Cajochen C (1997) Melatonin and the circadian regulation of sleep initiation, consolidation, structure, and the sleep, EEG. J Biol Rhythms 12:627–639

    PubMed  CAS  Google Scholar 

  • Djeridane Y, Charbuy H, Touitou Y (2005) Old rats are more sensitive to photoperiodic changes. A study on pineal melatonin. Exp Gerontol 40:403–408

    PubMed  CAS  Google Scholar 

  • Dubocovich ML, Mansana MI, Benloucif S (1999) Molecular pharmacology and function of melatonin receptor subtypes. Adv Exp Med Biol 460:181–190

    Article  PubMed  CAS  Google Scholar 

  • Esrefoglu M, Seyhan M, Gul M, Parlapinar H, Batcioglu K, Uyumla B (2005) Potent therapeutic effect of melatonin on aging skin in pinealectomized rats. J Pineal Res 39:231–237

    PubMed  CAS  Google Scholar 

  • Finnochiaro LME, Glikin GC (1998) Intracellular melatonin distribution in cultured cell lines. J Pineal Res 24:22–34

    Google Scholar 

  • Fischer TW, Zbytek B, Sayre RM, Apostolov EO, Basnakian AG, Sweatman TW, Wortsman J, Elsner P, Slominski A (2006) Melatonin increases survival of HaCaT keratinocytes by suppressing UV-induced apoptosis. J Pineal Res 40:18–26

    PubMed  CAS  Google Scholar 

  • Garcia JJ, Reiter RJ, Ortiz GG, Oh CS, Tang L, Yu BP, Escames G (1998) Melatonin enhances tamoxifen's ability to prevent the reduction in microsomal membrane fluidity induced by lipid peroxidation. J Membr Biol 162:59–65

    PubMed  CAS  Google Scholar 

  • Garcia-Mauriño S, Pozo D, Calyo JR, Guerrero JM (2000) Correlation between nuclear melatonin reception expression and enhanced cytokine production in human lymphocytic and monocytic cell lines. J Pineal Res 29:129–137

    PubMed  Google Scholar 

  • Garcia-Mauriño S, Gonzalez-Haba MG, Calvo JR, Goberna R, Guerrero JM (1998) Ca melatonin in the regulation of, IL-2 and, IL-6 production by human blood mononuclear cells. J Neuroimmunol 92:76–84

    PubMed  Google Scholar 

  • Gilad E, Cuzzocrea S, Zingarelli B, Salzman AL, Szabo C (1997) Melatonin is a scavenger of peroxynitrite. Life Sci 60:169–174

    Google Scholar 

  • Guerrero JM, Pozo D, Garcia-Maurino S, Carrillo-Vico S, Osuan C, Calvo RJ (2000) Nuclear receptors are involved in the enhanced IL-6 production by melatonin in U937 cells. Biol Signals Recept 9:197–202

    PubMed  CAS  Google Scholar 

  • Guerrero JM, Reiter RJ (2002) Melatonin-immune system relationships. Curr Top Med Chem 2:167–180

    PubMed  CAS  Google Scholar 

  • Gulcin I, Buyukokuroglu ME, Kufrevioglu OI (2003) Metals chelating and hydrogen peroxide scavenging effects of melatonin. J Pineal Res 34:278

    Article  PubMed  CAS  Google Scholar 

  • Gupta M, Gupta YK, Agarwal S, Aneja S, Kohli K et al (2004) Effects of add-on melatonin administration on antioxidant enzymes in children with epilepsy taking carbamazepine monotherapy: a randomized, double-blind, placebo-controlled trial. Epilepsia 45:1636–1639

    PubMed  CAS  Google Scholar 

  • Gurlek A, Aydogan H, Parlakpinar H, Bay-Karabulut A, Celik M, Sezgin N, Acet A (2004) Protective effect of melatonin on random pattern skin flap necrosis in pinealectomized rat. J Pineal Res 36:58–63

    PubMed  CAS  Google Scholar 

  • Hara M, Yoshida M, Nishijima H, Yokosuka M, Iigo M, Ohtani-Kaneko R, Shimada A, Hasegawa T, Akama Y, Hirata K (2001) Melatonin, a pineal secretory product with antioxidant properties, protects against cisplatin-induced nephrotoxicity in rats. J Pineal Res 30:129–138

    PubMed  CAS  Google Scholar 

  • Hara M, Iigo M, Ohtani-Kaneko R, Nakamura N, Suzuki T, Reiter RJ, Hirata K (1997) Administration of melatonin and related indoles prevents exercise-induced cellular oxidative changes in rats. Biol Signals 6:90–100

    PubMed  CAS  Google Scholar 

  • Hardeland R, Balzer I, Poeggeler B, Fuhrberg B, Uria H, Behrmann G, Wolf R, Meyer TJ, Reiter RJ (1995) On the primary functions of melatonin in evolution: mediation of photoperiodic signals in unicell, photoxidation, and scavenging of free radicals. J Pineal Res 18:104–111

    PubMed  CAS  Google Scholar 

  • Hardeland R, Reiter RJ, Poeggeler B, Tan DX (1993) The significance of the metabolism of the neurohormone melatonin: antioxidant protection and formation of bioactive substances. Neurosci Biobehav Rev 17:347–357

    PubMed  CAS  Google Scholar 

  • Horstman JA, Wrona MZ, Dryhurst G (2002) Further insights into the reaction of melatonin with hydroxyl radical. Bioorg Chem 30:371–382

    PubMed  CAS  Google Scholar 

  • Hurn PD, Kirsch JR, Helfaer M, Traystman RJ (1996) Brain damage and free radicals In: Kamada T, Shinga T, McCuskey RS (eds) Tissue perfusion and organ function: ischemia/reperfusion injury. Elsevier Science, New York, pp 71–84

    Google Scholar 

  • Ianas O, Olinescu R, Badescu I (1991) Melatonin involvement in oxidative processes. Endocrinologie 29:147–153

    PubMed  CAS  Google Scholar 

  • Karasek M (2004) Melatonin, human aging, and age-related diseases. Exp Gerontol 39:1723–1729

    PubMed  CAS  Google Scholar 

  • Karbownik M, Reiter RJ (2002) Melatonin protects against oxidative stress caused by delta-aminolevulinic acid: implications for cancer reduction. Cancer Invest 20:276–286

    PubMed  CAS  Google Scholar 

  • Kotler M, Rodriquez C, Sainz RM, Antolin I, Menedez-Pelaez A (1998) Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 24:83–89

    PubMed  CAS  Google Scholar 

  • Lack B, Nyokong T, Daya S (2001) Interaction of serotonin and melatonin with sodium, potassium, calcium, lithium, and aluminium. J Pineal Res 31:102–108

    PubMed  CAS  Google Scholar 

  • Leon J, Escames G, Rodriquez MI, Lopez LC, Tapias V, Entrena A, Camacho E, Carrion MD, Gallo MA, Espinosa A, Tan D-X, Reiter RJ, Acuna-Castroviejo D (2006) Inhibition of neuronal nitric oxide synthase activity by N(1)-acetyl-5-methoxykynuramine, a brain metabolite of melatonin. J Neurochem 98:2023–2033

    PubMed  CAS  Google Scholar 

  • Leon J, Macias M, Escames G, Camacho E, Khaldy H, Martin M, Espinosa A, Gallo MA, Acuña-Castroviejo D (2000) Structure-related inhibition of calmodulin-dependent neuronal nitric-oxide synthase activity by melatonin and synthetic kynurenines. Mol Pharmacol 58:967–975

    PubMed  CAS  Google Scholar 

  • Lewis AJ, Kerenyi NA, Feuer G (1990) Neuropharmacology of pineal secretions. Rev Drug Metab Drug Interact 8:247–312

    CAS  Google Scholar 

  • Li XJ, Zhang LM, Gu J, Zhang AZ, Sun FY (1997) Melatonin Decreases Production of Hydroxyl Radical during Cerebral Ischemia-reperfusion. Acta Pharmac Sinica 18:394–396

    CAS  Google Scholar 

  • Limson J, Nyokong T, Daya S (1998) The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc. An adsorptive voltammetric study. J Pineal Res 24:12–21

    Google Scholar 

  • Livera MA, Tesoriere L, D’ Apra D, Morreale M (1997) Reaction of melatonin with lipoperoxyl radicals in phospholipids bilayers. Free Rad Biol Med 23:706–711

    Google Scholar 

  • Lui X, Chen Z, Chua CC, Ma Y-S, Youngberg GA, Hamdy R, Chua BHL (2002) Melatonin as an effective protector against doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 283:H254–H263

    Google Scholar 

  • Ma X, Idle JR, Krausz KW, Tan D-X, Ceraulo L, Gonzalez FJ (2006) Urinary metabolites and antioxidant products of exogenous melatonin in the mouse. J Pineal Res 40:343–349

    PubMed  CAS  Google Scholar 

  • Maestroni GJM (2001) The immunotherapeutic potential of melatonin. Exp Opin Invest Drugs 10:467–476

    CAS  Google Scholar 

  • Mahal HS, Sharma HS, Mukherjee T (1999) Antioxidant properties of melatonin: a pulse radiolysis study. Free Rad Biol Med 26:557–565

    PubMed  CAS  Google Scholar 

  • Maharaj DS, Molell H, Antunes EM, Maharaj H, Maree DM, Nyokong T, Glass BD, Daya S (2005a) Melatonin generates singlet oxygen on laser irradiation but acts as a quencher when irradiated by lamp photolysis. J Pineal Res 38:153–156

    PubMed  CAS  Google Scholar 

  • Maharaj DS, Maharaj H, Antunes EM, Maree DM, Nyokong T, Glass BD, Daya S (2005b) 6-Hydroxymelatonin protects against quinolinic acid induced oxidative neurotoxicity and quenches singlet oxygen. J Pharm Pharmacol 57:877–882

    PubMed  CAS  Google Scholar 

  • Maharaj DS, Limson JL, Daya S (2003a) 6-Hydroxymelatonin converts Iron (III) to Iron (II). Life Sci 72:1367–75

    PubMed  CAS  Google Scholar 

  • Maharaj DS, Walker RB, Glass BD, Daya S (2003b) 6-Hydroxymelatonin protects against KCN-induced free radical attack in rat brain homogenates. J Chem Neuroanat 26:103–107

    PubMed  CAS  Google Scholar 

  • Maharaj DS, Anoopkumar-Dukie S, Glass BD, Antunes EM, Lack B, Walker RB, Daya S (2002) Identification of the UV degradants of melatonin and their ability to scavenge free radicals. J Pineal Res 32:257–261

    PubMed  CAS  Google Scholar 

  • Mainous MR, Ertel W, Chaudry IH, Deitch EA (1995) The gut: a cytokine-generating organ in systemic inflammation? Shock 4:193–199

    PubMed  CAS  Google Scholar 

  • Maldonado MD, Murillo-Cabezas F, Terron MP, Flores LJ, Tan D-X, Manchester LC, Reiter RJ (2007) The potential of melatonin in reducing morbidity–mortality after craniocerebral trauma. J Pineal Res 42:1–11

    PubMed  CAS  Google Scholar 

  • Marshall KA, Reiter RJ, Poeggeler B, Aruoma OI, Halliwell B (1996) Evaluation of the antioxidant activity of melatonin in vitro. Free Rad Biol Med 21:307–315

    PubMed  CAS  Google Scholar 

  • Martin M, Macias M, Escames G, Leon J, Acuna-Castroviejo D (2000b) Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J 14:2128

    CAS  Google Scholar 

  • Martin M, Macias M, Leon J, Escames G, Khaldy H, Acuña-Castroviejo D (2002) Melatonin increases the activity of the oxidative phosphorilaiton enzymes and the production of ATP in rat brain and liver mitochondria. Int J Biochem Cell Biol 34:348–357

    PubMed  CAS  Google Scholar 

  • Martin M, Macias M, Escames G, Reiter RJ, Agapito MT, Ortiz GG, Acuna-Castroviejo D (2000a) Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by rethenium red invivo. J Pineal Res 28:242–248

    PubMed  CAS  Google Scholar 

  • Matuszak K, Reszka KJ, Chignell CF (1997) Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigation. Free Rad Biol Med 23:367–372

    PubMed  CAS  Google Scholar 

  • Menéndez-Peláez A, Reiter RJ (1993) Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res 15:59–69

    PubMed  Google Scholar 

  • Menéndez-Peláez A, Poeggeler B, Reiter RJ, Barlow-Walden L, Pablos MI, Tan DX (1993) Nuclear localization of melatonin in different mammalian tissues: immunocytochemical and radioimmunoassay evidence. J Cell Biochem 53:373–382

    PubMed  Google Scholar 

  • Mills E, Wu P, Seely D, Guyatt G (2005) Melatonin in the treatment of cancer: a systematic review of randomized controlled trials and meta-analysis. J Pineal Res 39:360–366

    PubMed  CAS  Google Scholar 

  • Molina-Carballo A, Muniz-Hoyos A, Reiter RJ, Sanchez-Forte M, Moreno-Madrid F, Rufo-Campos M, Molina-Font JA, Acuna-Castroviejo D (1997) Utility of high doses of melatonin as adjunctive anticonvulsant therapy in a child with severe myoclonic epilepsy: two years’ experience. J Pineal Res 23(2):97–105

    PubMed  CAS  Google Scholar 

  • Montilla P, Tunez I, Muñoz MC, Lopez A, Loria JV (1997) Hyperlipidemic nephropathy induced by adriamycin: effect of melatonin administration. Nephron 76:345–350

    Article  PubMed  CAS  Google Scholar 

  • Naidu PS, Singh A, Kaur P, Sandhir R, Kulkawi SK (2003) Possible mechanism of action in melatonin attenuation of haloperidolinduced orofacial dyskinesia. Pharmacol Biochem Behav 74:641–648

    PubMed  CAS  Google Scholar 

  • Noda Y, Mori A, Liburty R, Packer L (1999) Melatonin and its precursors scavenge nitric oxide. J Pineal Res 27:159–163

    PubMed  CAS  Google Scholar 

  • Onuki J, Almeida EA, Medeiros MH, Di Mascio P (2005) Inhibition of 5-aminolevulinic acid-induced DNA damage by melatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, quercetin or resveratrol. J Pineal Res 38:107–115

    PubMed  CAS  Google Scholar 

  • Pablos MI, Agapito MT, Gutierrez R, Recio JM, Reiter RJ, Barlow-Walden LR, Acuña-Castroviejo D, Menéndez-Peláez A (1995) Melatonin stimulates the activity of the detoxifying enzyme glutathione peroxide in several tissues of chicks. J Pineal Res 19:111–115

    PubMed  CAS  Google Scholar 

  • Pablos MI, Reiter RJ, Ortiz GG, Guerrero JM, Agapito MT, Chuang JI, Sewerynek E (1998) Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem Int 32:69–75

    PubMed  CAS  Google Scholar 

  • Pablos MI, Guerrero JM, Ortiz GG, Agapito MT, Reiter RJ (1997) Both melatonin and a putative nuclear melatonin receptor agonist CGP 52608 stimulate glutathione peroxidase and glutathione reductase activities in mouse brain in vivo. Neuroendocrin Lett 18:49–58

    CAS  Google Scholar 

  • Pähkla R, Zilmer M, Kullisaar T, Rägo L (1998) Comparison of the antioxidant activity of melatonin and pinoline in vivo. J Pineal Res 24:96–101

    PubMed  Google Scholar 

  • Pang SF, Li L, Ayre EA, Pang CS, Lee PPN, Xu RK, Chow PH, Yu ZH, Shiu SYW (1998) Neuroendocrinology of melatonin in reproduction: recent developments. J Chem Neuroanat 14:157–166

    PubMed  CAS  Google Scholar 

  • Parmar P, Limson J, Daya S (2002) Melatonin protects against copper-mediated free radical damage. J Pineal Res 32:237–242

    PubMed  CAS  Google Scholar 

  • Perotti C, Cases A, Del C, Batlle AM (2002) Scavengers protection of cells against ALA-based photodynamic therapy-induced damage. Lasers Med Sci 17:222–229

    PubMed  CAS  Google Scholar 

  • Phelps DT, Ferro TJ, Higgins PJ, Sankar R, Parker DM, Johnson M (1995) TNF-alpha induces peroxynitrite-mediated depletion of lung endothelial glutathione via protein kinase C. Am J Physiol 269:551–559

    Google Scholar 

  • Pieri C, Moroni M, Marcheselli F, Marra M, Recchioni R (1995) Melatonin is an efficient antioxidant. Arch Gerontol Geriatr 20:159–165

    PubMed  CAS  Google Scholar 

  • Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 55:271–276

    Google Scholar 

  • Pierrefiche G, Laborit H (1995) Oxygen radicals, melatonin and aging. Exp Gerontol 30:213–227

    PubMed  CAS  Google Scholar 

  • Pierrefiche G, Topall G, Courbin I, Henriet I, Laborit H (1993) Antioxidant activity of melatonin in mice. Res Comm Chem Pathol Pharmacol 80:211–223

    CAS  Google Scholar 

  • Poeggeler B, Reiter RJ, Hardeland R, Tan DX, Barlow-Walden LR (1996) Melatonin and structurally related endogenous indoles act as potent electron donors and radical scavengers in vitro. Redox Rep 2:179–184

    CAS  Google Scholar 

  • Poeggeler B, Reiter RJ, Hardeland R, Sewerynek E, Melchiorri D, Barlow-Walden LR (1995) Melatonin, a mediator of electron transfer and repair reactions, acts synergistically with the chain-breaking antioxidants ascorbate, trolox and glutathione. Neurendocrin Lett 17:87–92

    CAS  Google Scholar 

  • Poeggeler B, Saarela S, Reiter RJ, Tan DX, Chen LD, Manchester LC, Barlow-Walden L (1994) Melatonin – highly potent endogenous scavenger and electron donor: New aspects of the oxidation chemistry of this indole assessed in vitro. Ann NY Acad Sci 738:419–420

    Article  PubMed  CAS  Google Scholar 

  • Poeggeler B, Thuermann S, Dore A, Schoenke M, Burkhardt S, Hardeland R (2002) Melatonin’s unique scavenging properties – roles of its functional substituents as revealed by a comparison with its structural analogues. J Pineal Res 33:20–30

    PubMed  CAS  Google Scholar 

  • Pozo D, Reiter RJ, Calvo JR, Guerrero JM (1997) Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J Cell Biochem 65:430–442

    PubMed  CAS  Google Scholar 

  • Pozo D, Reiter RJ, Calvo JR, Guerrero JM (1994) Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sci 55:455–460

    Google Scholar 

  • Pryor W, Squadrito G (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:L699–722

    PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Pappolla MA (2004) Melatonin relieves the neural oxidative burden that contributes to dementias. Ann NY Acad Sci 1035:179–196

    PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX (2003) Melatonin: a novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc Res 58:10–9

    PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Sainz RM, Mayo JM, Lopez-Burillo S (2002) Melatonin: reducing the toxicity and increasing the efficacy of drugs. J Pharm Pharmacol 75:1299–1321

    Google Scholar 

  • Reiter RJ, Tan DX, Acuña-Castroviejo D, Burkhardt S, Karbownik M (2000a) Melatonin: mechanisms and actions as an antioxidant. Curr Topics Biophys 24:171–183

    CAS  Google Scholar 

  • Reiter RJ, Tan DX, Osuna C, Gitto E (2000b) Actions of melatonin in the reduction of oxidative stress: a review. J Biomed Sci 7:444–458

    PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Qi W, Manchester LC, Karbownik M, Calvo JR (2000c) Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo. Biol Signals Recept 9:60–171

    Google Scholar 

  • Reiter RJ, Tan DX, Sainz RM, Mayo JC (2000d) Melatonin: Reducing the toxicity and increasing the efficacy of drugs. J Pharm Pharmacol 54:1299–1321

    Google Scholar 

  • Reiter RJ (1998a) Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56:359–384

    PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Qi W (1998b) Suppression of oxygen toxicity by melatonin. Acta Pharmacol Sinica 19:575–581

    CAS  Google Scholar 

  • Reiter RJ (1998c) Melatonin, active oxygen species and neurological damage. Drug News Perspect 11(5):291–296

    PubMed  CAS  Google Scholar 

  • Reiter RJ, Pablos MI, Agapito TT, Guerrero JM (1996) Melatonin in the context of the free radical theory of aging. Ann NY Acad Sci 786:362–378

    PubMed  CAS  Google Scholar 

  • Reiter RJ (1980) The pineal and its hormones in the control of reproduction in mammals. Endocr Rev 1:109–131

    PubMed  CAS  Google Scholar 

  • Reiter RJ (1992) The aging pineal gland and its physiological consequences. Bio Essays 14:169–175

    CAS  Google Scholar 

  • Ressmeyer AR, Mayo JC, Zelosko V, Sainz RM, Tan DX, Poeggeler B, Antolin I, Reiter RJ, Hardeland R (2003) Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep 8:205–213

    PubMed  CAS  Google Scholar 

  • Roberts JE, Hu DN, Martinez L, Chignell CF (2000) Photophysical studies on melatonin and its receptor agonists. J Pineal Res 29:94–99

    PubMed  CAS  Google Scholar 

  • Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrara F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9

    PubMed  CAS  Google Scholar 

  • Romero MP, Garcia-Pergañeda JM, Guerrero JM, Osuna C (1998) Membrane5 bound calmodulin in Xenopus laevis oocytes as a novel binding site for 6 melatonin. FASEB J 12:1401–1408

    PubMed  CAS  Google Scholar 

  • Sakano K, Oikawa S, Hiraku Y, Kawanishi S (2004) Oxidative DNA damage induced by a melatonin metabolite, 6-hydroxymelatonin, via a unique non-o-quinone type of redox cycle. Biochem Pharmacol 68:869–878

    Google Scholar 

  • Sauer LA, Dauchy RT, Blask DE (2001) Mechanism for the antitumor and anticachectic effects of n-3 fatty acids. Cancer Res 60:5289–5295

    Google Scholar 

  • Shida CS, Castrucci AML, Lamy-Freund MT (1994) High melatonin solubility in aqueous medium. J Pineal Res 16:198–201

    PubMed  CAS  Google Scholar 

  • Shaw KM, Stern GM, Sandler M (1973) Melatonin and Parkinsonism. Lancet 1:271

    PubMed  CAS  Google Scholar 

  • Silva SO, Rodrigues MR, Ximenes VF, Bueno-da-Silva AE, Amarante-Mendes GP, Campa A (2004) Neutrophils as a specific target for melatonin and kynuramines: effects on cytokine release. J Neuroimmuol 156:146–152

    CAS  Google Scholar 

  • Skene DJ, Swaab DF (2003) Melatonin rhythmicity: effect of age and Alzheimer's disease. Exp Gerontol 38(1–2):199–206

    PubMed  CAS  Google Scholar 

  • Stasica P, Paneth P, Rosiak JM (2000) Hydroxyl radical reaction with melatonin molecule: A computational study. J Pineal Res 29:125–7

    PubMed  CAS  Google Scholar 

  • Stokkan KA, Reiter RJ, Nonaka KD, Lerchl A, Yu BP (1991) Food restriction retards aging of the pineal gland. Brain Res 545:66–72

    PubMed  CAS  Google Scholar 

  • Tan D-X, Manchester LC, Terron MP, Flores LF, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42

    PubMed  CAS  Google Scholar 

  • Tan D-X, Manchester LC, Hardeland R, Lopez-Burillo S, Mayo JC, Sainz RM, Reiter RJ (2003) Melatonin: a hormone, a tissue factor, an autocoid, a paracoid and an antioxidant vitamin. J Pineal Res 34:75–78

    PubMed  CAS  Google Scholar 

  • Tan DX, Reiter RJ, Manchester LC, Yan MT, El-Sawi M, Sainz RM, Mayo JC, Kohen R, Allegra M, Hardeland R (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad-spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2:181–98

    PubMed  CAS  Google Scholar 

  • Tan DX, Manchester LC, Burkhardt S, Sainz RM, Mayo JC, Kohen R, Shohami E, Huo YX, Hardeland R, Reiter RJ (2001) N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J 15:2294–2296

    PubMed  CAS  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Plummer BF, Limson J, Weintraub ST, Qi W, (2000a) Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Rad Biol Med 29:1177–1185

    PubMed  CAS  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo VR (2000b) Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 9:137–159

    PubMed  CAS  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Plummer BF, Hardies LJ, Weintraub S, Vijayalaxmi, Shepherd AMM (1998) A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Comm 253:614–620

    PubMed  CAS  Google Scholar 

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993a) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocrine J 1:57–60

    Google Scholar 

  • Tan DX, Poeggeler B, Reiter RJ, Chen LD, Chen S, Manchester LC, Barlow-Walden LR (1993b) The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett 70:65–71

    PubMed  CAS  Google Scholar 

  • Tesoriere L, D’Arpa D, Conti S, Giaccone V, Pintaudi AM, Livrea MA (1999) Melatonin protects human red blood cells from oxidative hemolysis: new insights into the radical-scavenging activity. J Pineal Res 27:95–105

    PubMed  CAS  Google Scholar 

  • Turjanski AG, Estrin DA, Rosenstein RE, McCormick JE, Martin SR, Pastore A, Biekofsky RR, Martorana V (2004) NMR and molecular dynamics studies of the interaction of melatonin with calmodulin. Eur J Pharmacol 501:25–30

    Google Scholar 

  • Urata Y, Honma S, Goto S, Honma S, Goto S, Todoroki S, Iida T, Cho S, Honma K, Kondo T (1999) Melatonin induces gammaglutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Rad Biol Med 27:838–47

    PubMed  CAS  Google Scholar 

  • Vaughan MK, Vaughan GM, Reiter RJ (1976) Inhibition of human chorionic gonadotrophin-induced hypertrophy of the ovaries and uterus in immature mice by some pineal indoles, 6-hydroxymelatonin and arginine vasotocin. J Endocrinol 68:397–400

    PubMed  CAS  Google Scholar 

  • Vladimir NAnisimov, Irina NAlimova, Dmitri ABaturin, Irina GPopovich, Mark AZabezhinski, Svetlana VRosenfeld, Kenneth GManton, Anna Vsemenchenko, Anatoli IYashin (2003) Dose-dependent effect of melatonin on life span and spontaneous tumor incidence in female SHR mice. Exp Gerontol 38:449–461

    Google Scholar 

  • Wu YH, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer's disease. J Pineal Res 38(3):145–153

    PubMed  CAS  Google Scholar 

  • Yoshida M, Fukuda A, Hara M, Terada A, Kitanaka Y, Owada S (2003) Melatonin prevents the increase in hydroxyl radical-spin trap adduct formation caused by the addition of cisplatin in vitro. Life Sci 72:1773–1780

    PubMed  CAS  Google Scholar 

  • Zhang S, Li W, Gao Q, Wei T (2004) Effect of melatonin on the generation of nitric oxide in murine macrophages. Eur J Pharmacol 501:25–30

    PubMed  CAS  Google Scholar 

  • Zang LY, Cosma G, Cardner H, Vallyathan V (1998) Scavenging of reactive oxygen species by melatonin. Biochim Biophys Acta 1425:469–477

    PubMed  CAS  Google Scholar 

  • Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF (2003) Early neuropathological Alzheimer's changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 35(2):125–130

    PubMed  CAS  Google Scholar 

  • Zisaprel N (2001) Melatonin-dopamine interactions: from basic neurochemistry to a clinical setting. Cell Mol Neurobiol 21(6):605–616

    Google Scholar 

Download references

Acknowledgements

The authors thank NRF for funding. DSM thanks the MRC for the postdoctoral fellowship. The authors would also like to thank Rhodes University in Grahamstown, South Africa and James Cook University in Townsville, Australia for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santy Daya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maharaj, D.S., Glass, B.D. & Daya, S. Melatonin: New Places in Therapy. Biosci Rep 27, 299–320 (2007). https://doi.org/10.1007/s10540-007-9052-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10540-007-9052-1

Keywords

Navigation