Skip to main content
Log in

Experimental Strategies Towards Treating Mitochondrial DNA Disorders

  • Original Paper
  • Published:
Bioscience Reports

Abstract

An extensive range of molecular defects have been identified in the human mitochondrial genome (mtDNA), causing a range of clinical phenotypes characterized by mitochondrial respiratory chain dysfunction. Sadly, given the complexities of mitochondrial genetics, there are no available cures for mtDNA disorders. In this review, we consider experimental, genetic-based strategies that have been or are being explored towards developing treatments, focussing on two specific areas which we are actively pursuing—assessing the benefit of exercise training for patients with mtDNA defects, and the prevention of mtDNA disease transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668

    Article  PubMed  CAS  Google Scholar 

  2. Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402

    Article  PubMed  CAS  Google Scholar 

  3. McFarland R, Taylor RW, Turnbull DM (2002) The neurology of mitochondrial DNA disease. Lancet Neurol 1:345–351

    Google Scholar 

  4. Taylor RW (2005) Gene therapy for the treatment of mitochondrial DNA disorders. Expert Opin Biol Ther 5:183–194

    Article  PubMed  CAS  Google Scholar 

  5. Chinnery P, Majaama K, Turnbull D, Thorburn D (2006) Treatment for mitochondrial disorders. Cochrane Database Syst Rev 1:CD004426

    PubMed  Google Scholar 

  6. DiMauro, S (2007) Therapeutic strategies—this series of biosciences report

  7. Nagley P, Farrell LB, Gearing DP, Nero D, Meltzer S, Devenish RJ (1988) Assembly of functional proton-translocating ATPase complex in yeast mitochondria with cytoplasmically synthesized subunit 8, a polypeptide normally encoded within the organelle. Proc Natl Acad Sci USA 85:2091–2095

    Article  PubMed  CAS  Google Scholar 

  8. Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J, Schon EA (2002) Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet 30:394–399

    Article  PubMed  CAS  Google Scholar 

  9. Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, Martinuzzi A, Hauswirth WW, Lewin AS (2002) Rescue of a mitochondrial deficiency causing leber hereditary optic neuropathy. Ann Neurol 52:534–542

    Article  PubMed  CAS  Google Scholar 

  10. Funes S, Davidson E, Claros MG, van Lis R, Perez-Martinez X, Vazquez-Acevedo M, King MP, Gonzalez-Halphen D (2002) The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0−ATPase is encoded by a nuclear gene in Chlamydomonas reinhardtii. J Biol Chem 277:6051–6058

    Article  PubMed  CAS  Google Scholar 

  11. Ojaimi J, Pan J, Santra S, Snell WJ, Schon EA (2002) An algal nucleus-encoded subunit of mitochondrial ATP synthase rescues a defect in the analogous human mitochondrial-encoded subunit. Mol Biol Cell 13:3836–3844

    Article  PubMed  CAS  Google Scholar 

  12. Seo BB, Wang J, Flotte TR, Yagi T, Matsuno-Yagi A (2000) Use of the NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae as a possible cure for complex I defects in human cells. J Biol Chem 275:37774–37778

    Article  PubMed  CAS  Google Scholar 

  13. Bai Y, Hajek P, Chomyn A, Bai Y, Chan E, Seo BB, Matsuno-Yagi A, Yagi T, Attardi G (2001) Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. J Biol Chem 276:38808–38813

    Article  PubMed  CAS  Google Scholar 

  14. Seo BB, Nakamaru-Ogiso E, Cruz P, Flotte TR, Yagi T, Matsuno-Yagi A (2004) Functional expression of the single subunit NADH dehydrogenase in mitochondria in vivo: a potential therapy for complex I deficiencies. Hum Gene Ther 15:887–895

    Article  PubMed  CAS  Google Scholar 

  15. Kolesnikova OA, Entelis NS, Mireau H, Fox TD, Martin RP, Tarassov IA (2000) Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 289:1931–1933

    Article  PubMed  CAS  Google Scholar 

  16. Kolesnikova OA, Entelis NS, Jacquin-Becker C, Goltzene F, Chrzanowska-Lightowlers ZM, Lightowlers RN, Martin RP, Tarassov I (2004) DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet 13:2519–2534

    Article  PubMed  CAS  Google Scholar 

  17. Mahata B, Mukherjee S, Mishra S, Bandyopadhyay A, Adhya S (2006) Functional delivery of a cytosolic tRNA into mutant mitochondria of human cells. Science 314:471–474

    Article  PubMed  CAS  Google Scholar 

  18. Taylor RW, Wardell TM, Connolly BA, Turnbull DM, Lightowlers RN (2001) Linked oligodeoxynucleotides show binding cooperativity and can selectively impair replication of deleted mitochondrial DNA templates. Nucleic Acids Res 29:3404–3412

    Article  PubMed  CAS  Google Scholar 

  19. Taylor RW, Chinnery PF, Turnbull DM, Lightowlers RN (1997) Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet 15:212–215

    Article  PubMed  CAS  Google Scholar 

  20. Chinnery PF, Taylor RW, Diekert K, Lill R, Turnbull DM, Lightowlers RN (1999) Peptide nucleic acid delivery to human mitochondria. Gene Ther 6:1919–1928

    Article  PubMed  CAS  Google Scholar 

  21. Muratovska A, Lightowlers RN, Taylor RW, Turnbull DM, Smith RA, Wilce JA, Martin SW, Murphy MP (2001) Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res 29:1852–1863

    Article  PubMed  CAS  Google Scholar 

  22. Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A (2006) Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci USA 103:9689–9694

    Article  Google Scholar 

  23. Tanaka M, Borgeld HJ, Zhang J, Muramatsu S, Gong JS, Yoneda M, Maruyama WK, Akao Y, Ohishi N, Miyabayashi S, Umemoto H, Muramatsu T, Furukawa K, Kikuchi A, Nakano I, Ozawa K, Yagi K (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 9:534–541

    PubMed  CAS  Google Scholar 

  24. Srivastava S, Moraes CT (2001) Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10:3093–3099

    Article  PubMed  CAS  Google Scholar 

  25. Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT (2005) Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci USA 102:14392–14397

    Article  PubMed  CAS  Google Scholar 

  26. Manfredi G, Gupta N, Vazquez-Memije ME, Sadlock JE, Spinazzola A, De Vivo DC, Schon EA (1999) Oligomycin induces a decrease in the cellular content of a pathogenic mutation in the human mitochondrial ATPase 6 gene. J Biol Chem 274:9386–9391

    Article  PubMed  CAS  Google Scholar 

  27. Santra S, Gilkerson RW, Davidson M, Schon EA (2004) Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol 56:662–669

    Article  PubMed  CAS  Google Scholar 

  28. Taivassalo T, Haller RG (2004) Implications of exercise training in mtDNA defects-use it or lose it? Biochim Biophys Acta 1659:221–231

    Article  PubMed  CAS  Google Scholar 

  29. Taivassalo T, Matthews PM, De Stefano N, Sripathi N, Genge A, Karpati G, Arnold DL (1996) Combined aerobic training and dichloroacetate improve exercise capacity and indices of aerobic metabolism in muscle cytochrome oxidase deficiency. Neurology 47:529–534

    PubMed  CAS  Google Scholar 

  30. Taivassalo T, De Stefano N, Argov Z, Matthews PM, Chen J, Genge A, Karpati G, Arnold DL (1998) Effects of aerobic training in patients with mitochondrial myopathies. Neurology 50:1055–1060

    PubMed  CAS  Google Scholar 

  31. Taivassalo T, De Stefano N, Chen J, Karpati G, Arnold DL, Argov Z (1999) Short-term aerobic training response in chronic myopathies. Muscle Nerve 22:1239–1243

    Article  PubMed  CAS  Google Scholar 

  32. Taivassalo T, Shoubridge EA, Chen J, Kennaway NG, DiMauro S, Arnold DL, Haller RG (2001) Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol 50:133–141

    Article  PubMed  CAS  Google Scholar 

  33. Jeppesen TD, Schwartz M, Olsen DB, Wibrand F, Krag T, Duno M, Hauerslev S, Vissing J (2006) Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy. Brain 129:3402–3412

    Article  PubMed  Google Scholar 

  34. Taivassalo T, Gardner JL, Taylor RW, Schaefer AM, Newman J, Barron MJ, Haller RG, Turnbull DM (2006) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 129:3391–3401

    Article  PubMed  Google Scholar 

  35. Fu K, Hartlen R, Johns T, Genge A, Karpati G, Shoubridge EA (1996) A novel heteroplasmic tRNAleu(CUN) mtDNA point mutation in a sporadic patient with mitochondrial encephalomyopathy segregates rapidly in skeletal muscle and suggests an approach to therapy. Hum Mol Genet 5:1835–1840

    Article  PubMed  CAS  Google Scholar 

  36. Weber K, Wilson JN, Taylor L, Brierley E, Johnson MA, Turnbull DM, Bindoff LA (1997) A new mtDNA mutation showing accumulation with time and restriction to skeletal muscle. Am J Hum Genet 60:373–380

    PubMed  CAS  Google Scholar 

  37. Clark KM, Bindoff LA, Lightowlers RN, Andrews RM, Griffiths PG, Johnson MA, Brierley EJ, Turnbull DM (1997 Reversal of a mitochondrial DNA defect in human skeletal muscle. Nat Genet 16:222–224

    Article  PubMed  CAS  Google Scholar 

  38. Shoubridge EA, Johns T, Karpati G (1997) Complete restoration of a wild-type mtDNA genotype in regenerating muscle fibres in a patient with a tRNA point mutation and mitochondrial encephalomyopathy. Hum Mol Genet 6:2239–2242

    Article  PubMed  CAS  Google Scholar 

  39. Taivassalo T, Fu K, Johns T, Arnold D, Karpati G, Shoubridge EA (1999) Gene shifting: a novel therapy for mitochondrial myopathy. Hum Mol Genet 8:1047–1052

    Article  PubMed  CAS  Google Scholar 

  40. Brown DT, Samuels DC, Michael EM, Turnbull DM, Chinnery PF (2000) Random genetic drift determines the level of mutant mtDNA in human primary oocytes. Am J Hum Genet 68:533–536

    Article  PubMed  Google Scholar 

  41. White SL, Collins VR, Wolfe R, Cleary MA, Shanske S, DiMauro S, Dahl HH, Thorburn DR (1999) Genetic counseling and prenatal diagnosis for the mitochondrial DNA mutations at nucleotide 8993. Am J Hum Genet 65:474–482

    Article  PubMed  CAS  Google Scholar 

  42. Jacobs LJ, de Coo IF, Nijland JG, Galjaard RJ, Los FJ, Schoonderwoerd K, Niermeijer MF, Geraedts JP, Scholte HR, Smeets HJ (2005) Transmission and prenatal diagnosis of the T9176C mitochondrial DNA mutation. Mol Hum Reprod 11:223–228

    Article  PubMed  CAS  Google Scholar 

  43. Bouchet C, Steffann J, Corcos J, Monnot S, Paquis V, Rotig A, Lebon S, Levy P, Royer G, Giurgea I, Gigarel N, Benachi A, Dumez Y, Munnich A, Bonnefont JP (2006) Prenatal diagnosis of myopathy, encephalopathy, lactic acidosis, and stroke-like syndrome: contribution to understanding mitochondrial DNA segregation during human embryofetal development. J Med Genet 43:788–792

    Article  PubMed  CAS  Google Scholar 

  44. Handyside AH, Kontogianni EH, Hardy K, Winston RM (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344:768–770

    Article  PubMed  CAS  Google Scholar 

  45. Steffann J, Frydman N, Gigarel N, Burlet P, Ray PF, Fanchin R, Feyereisen E, Kerbrat V, Tachdjian G, Bonnefont JP, Frydman R, Munnich, A (2006) Analysis of mtDNA variant segregation during early human embryonic development: a tool for successful NARP preimplantation diagnosis. J Med Genet 43:244–247

    Article  PubMed  CAS  Google Scholar 

  46. Briggs DA, Power NJ, Lamb V, Rutherford AJ, Gosden RG (2000) Amplification of DNA sequences in polar bodies from human oocytes for diagnosis of mitochondrial disease. Lancet 355:1520–1521

    Article  PubMed  CAS  Google Scholar 

  47. Dean NL, Battersby BJ, Ao A, Gosden RG, Tan SL, Shoubridge EA, Molnar MJ (2003) Prospect of preimplantation genetic diagnosis for heritable mitochondrial DNA diseases. Mol Hum Reprod 9:631–638

    Article  PubMed  CAS  Google Scholar 

  48. Thorburn DR, Dahl HH (2001) Mitochondrial disorders: genetics, counseling, prenatal diagnosis and reproductive options. Am J Med Genet 106:102–114

    Article  PubMed  CAS  Google Scholar 

  49. Kagawa Y, Hayashi JI (1997) Gene therapy of mitochondrial diseases using human cytoplasts. Gene Ther 4:6–10

    Article  PubMed  CAS  Google Scholar 

  50. Cohen J, Scott R, Schimmel T, Levron J, Willadsen S (1997) Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 350:186–187

    Article  PubMed  CAS  Google Scholar 

  51. Templeton A (2002) Ooplasmic transfer—proceed with care. New Engl J Med 346:773–775

    Article  PubMed  Google Scholar 

  52. Hawes SM, Sapienza C, Latham KE (2002) Ooplasmic donation in humans: the potential for epigenic modifications. Hum Reprod 17:850–852

    Article  PubMed  Google Scholar 

  53. Brenner CA, Barritt JA, Willadsen S, Cohen J (2000) Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertil Steril 74:573–578

    Article  PubMed  CAS  Google Scholar 

  54. Roberts RM (1999) Prevention of human mitochondrial (mtDNA) disease by nucleus transplantation into an enucleated donor oocyte. Am J Med Genet 87:265–266

    Article  PubMed  CAS  Google Scholar 

  55. McGrath J, Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220:1300–1302

    Article  PubMed  CAS  Google Scholar 

  56. Meirelles FV, Smith LC (1997) Mitochondrial genotype segregation in a mouse heteroplasmic lineage produced by embryonic karyoplast transplantation. Genetics 145:445–451

    PubMed  CAS  Google Scholar 

  57. Meirelles FV, Smith LC (1998) Mitochondrial genotype segregation during preimplantation development in mouse heteroplasmic embryos. Genetics 148:877–883

    PubMed  CAS  Google Scholar 

  58. Sato A, Kono T, Nakada K, Ishikawa K, Inoue S, Yonekawa H, Hayashi J (2005) Gene therapy for progeny of mito-mice carrying pathogenic mtDNA by nuclear transplantation. Proc Natl Acad Sci USA 102:16765–16770

    Article  PubMed  CAS  Google Scholar 

  59. Brown DT, Herbert M, Lamb VK, Chinnery PF, Taylor RW, Lightowlers RN, Craven L, Cree L, Gardner JL, Turnbull DM (2006) Transmission of mitochondrial DNA disorders: possibilities for the future. Lancet 368:87–89

    Article  PubMed  CAS  Google Scholar 

  60. Inoue K, Nakada K, Ogura A, Isobe K, Goto Y, Nonaka I, Hayashi JI (2000) Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26:176–181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is supported by the Muscular Dystrophy Campaign, Wellcome Trust, Department of Health and the Newcastle upon Tyne Hospitals NHS Foundation Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, J.L., Craven, L., Turnbull, D.M. et al. Experimental Strategies Towards Treating Mitochondrial DNA Disorders. Biosci Rep 27, 139–150 (2007). https://doi.org/10.1007/s10540-007-9042-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10540-007-9042-3

Keywords

Navigation