Skip to main content
Log in

Spectrin Organization and Dynamics: New Insights

  • Original paper
  • Published:
Bioscience Reports

Abstract

Spectrin is the major constituent protein of the erythrocyte cytoskeleton which forms a filamentous network on the cytoplasmic face of the membrane by providing a scaffold for a variety of proteins. In this review, several aspects of spectrin organization are highlighted, particularly with respect to its ability to bind hydrophobic ligands and its interaction with membrane surfaces. The characteristic binding of the fluorescent hydrophobic probes Prodan and pyrene to spectrin, which allows an estimation of the polarity of the hydrophobic probe binding site, is illustrated. In addition, the contribution of uniquely localized and conserved tryptophan residues in the ‘spectrin repeats’ in these processes is discussed. A functional implication of the presence of hydrophobic binding sites in spectrin is its recently discovered chaperone-like activity. Interestingly, spectrin exhibits residual structural integrity even after denaturation which could be considered as a hallmark of cytoskeletal proteins. Future research could provide useful information about the possible role played by spectrin in cellular physiology in healthy and diseased states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,3-DPG:

2,3-Diphosphoglycerate

ANS:

1-Anilinonapthalene-8-sulfonic acid

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PS:

Phosphatidylserine

PRODAN:

6-Propionyl-2-dimethylaminonaphthalene

REES:

Red edge excitation shift

References

  • An X, Guo X, Sum H, Morrow J, Gratzer W, Mohandas N (2004) Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability. Biochemistry 43:310–315

    Article  PubMed  CAS  Google Scholar 

  • An X, Guo X, Zhang X, Baines AJ, Debnath G, Moyo D, Salomao M, Bhasin N, Johnson C, Discher D, Gratzer WB, Mohandas N (2006) Conformational stabilities of the structural repeats of erythroid spectrin and their functional implications. J Biol Chem 281:10527–10532

    Article  CAS  Google Scholar 

  • Badcoe IG, Smith CJ, Wood S, Halsall DJ, Holbrook JJ, Lund P, Clarke AR (1991) Binding of a chaperonin to the folding intermediates of lactate dehydrogenase. Biochemistry 30:9195–9200

    Article  PubMed  CAS  Google Scholar 

  • Balter A, Nowak W, Pawelkiewicz W, Kowalczyk A (1988) Some remarks on the interpretation of the spectral properties of prodan. Chem Phys Lett 143:565–570

    Article  CAS  Google Scholar 

  • Batey S, Randles LG, Steward A, Clarke J (2005) Cooperative folding in a multi-domain protein. J Mol Biol 349:1045–1059

    Article  PubMed  CAS  Google Scholar 

  • Beaven GH, Gratzer WB (1978) Binding of protoporphyrin and haemin to human spectrin. Acta Haematol 60:321–328

    PubMed  CAS  Google Scholar 

  • Beck KA, Nelson WJ (1996) The spectrin-based membrane skeleton as a membrane protein-sorting machine. Am J Physiol 270:C1263–C1270

    PubMed  CAS  Google Scholar 

  • Beechem JM, Brand L (1985) Time-resolved fluorescence of proteins. Annu Rev Biochem 54:43–71

    Article  PubMed  CAS  Google Scholar 

  • Begg GE, Morris MB, Ralston GB (1997) Comparison of the salt dependent self-association of brain and erythroid spectrin. Biochemistry 36:6977–6985

    Article  PubMed  CAS  Google Scholar 

  • Bennett V (1990) Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev 70:1029–1065

    PubMed  CAS  Google Scholar 

  • Bennett V, Gilligan MD (1993) The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol 9:27–66

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya M, Ray S, Bhattacharya S, Chakrabarti A (2004) Chaperone activity and Prodan binding at the self-associating domain of erythroid spectrin. J Biol Chem 279:55080–55088

    Article  PubMed  CAS  Google Scholar 

  • Bhavesh NS, Panchal SC, Hosur RV (2001) An efficient high-throughput resonance assignment procedure for structural genomics and protein folding research by NMR. Biochemistry 40:14727–14735

    Article  PubMed  CAS  Google Scholar 

  • Bialkowska K, Zembron A, Sikorski AF (1994) Ankyrin inhibits binding of erythrocyte spectrin to phospholipid vesicles. Biochim Biophys Acta 1191:21–26

    Article  PubMed  CAS  Google Scholar 

  • Birks JB (1970) Photophysics of aromatic molecules. Wiley-Interscience, London, pp 433–447

    Google Scholar 

  • Bitbol M, Dempsey C, Watts A, Devaux P (1989) Weak interaction of spectrin with phosphatidylcholine/phosphatidylserine multilayers: a 3H and 31P NMR study. FEBS Lett 244:217–222

    Article  PubMed  CAS  Google Scholar 

  • Blanco FJ, Serrano L, Forman-Kay JD (1998) High populations of nonnative structures in the denatured state are compatible with the formation of the native folded state. J Mol Biol 284:1153–1164

    Article  PubMed  CAS  Google Scholar 

  • Buchner J, Schmidt M, Fuchs M, Jaenicke R, Rudolph R, Schmid FX, Kiefhaber T (1991) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Cassoly R (1978) Evidence against the binding of native hemoglobin to spectrin of human erythrocytes. FEBS Lett 85:357–360

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti A (1996) Fluorescence of spectrin-bound prodan. Biochem Biophys Res Commun 226:495–497

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti A, Bhattacharya S (1999) Spectrin exhibits chaperone activity. Curr Sci 77:812–813

    CAS  Google Scholar 

  • Chakrabarti A, Bhattacharya S, Ray S, Bhattacharyya M (2001) Binding of a denatured heme protein and ATP to erythroid spectrin. Biochem Biophys Res Commun 282:1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay A (1992) Membrane penetration depth analysis using fluorescence quenching: a critical review. In: Gaber BP, Easwaran KRK (eds) Biomembranes structure & function: the state of the art. Adenine Press, Schenectady, NY, pp 153–163

    Google Scholar 

  • Chattopadhyay A (2003) Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem Phys Lipids 122:3–17

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Rawat SS, Kelkar DA, Ray S, Chakrabarti A (2003) Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach. Protein Sci 12:2389–2403

    Article  PubMed  CAS  Google Scholar 

  • Cohen AM, Liu S-C, Derick LH, Palek J (1986) Ultrastructural studies of the interaction of spectrin with phosphatidylserine liposomes. Blood 68:920–926

    PubMed  CAS  Google Scholar 

  • Czogalla A, Kwolek P, Hryniewicz-Jankowska A, Nietubyc M, Leluk J, Sikorski AF (2003) A protein isolated from Escherichia coli, identified as GroEL, reacts with anti-β spectrin antibodies. Arch Biochem Biophys 415:94–100

    Article  PubMed  CAS  Google Scholar 

  • Datta P, Chakrabarty SB, Chakrabarty A, Chakrabarti A (2003) Interaction of erythroid spectrin with hemoglobin variants: implications in β-thalassemia. Blood Cells Mol Dis 30:248–253

    Article  PubMed  CAS  Google Scholar 

  • De Matteis MA, Morrow JS (2000) Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci 113:2331–2343

    PubMed  Google Scholar 

  • Delaunay J, Dhermy D (1993) Mutations involving the spectrin heterodimer contact site: clinical expression and alterations in specific function. Semin Hematol 30:21–33

    PubMed  CAS  Google Scholar 

  • Demchenko AP (1988) Red-edge-excitation fluorescence spectroscopy of singletryptophan proteins. Eur Biophys J 16:121–129

    Article  PubMed  CAS  Google Scholar 

  • Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17:19–42

    Article  PubMed  CAS  Google Scholar 

  • DeSilva TM, Harper AL, Kotula L, Hensley P, Curtis PJ, Otvos L, Speicher DW (1997) Physical properties of a single-motif erythrocyte spectrin peptide: a highly stable independently folding unit. Biochemistry 36:3991–3997

    Article  PubMed  CAS  Google Scholar 

  • Diakowski W, Sikorski AF (1995) Interaction of brain spectrin (fodrin) with phospholipids. Biochemistry 34:13252–13258

    Article  PubMed  CAS  Google Scholar 

  • Diakowski W, Prychidny A, Swistak M, Nietubyc M, Bialkowska K, Szopa J, Sikorski AF (1999) Brain spectrin (fodrin) interacts with phospholipids as revealed by intrinsic fluorescence quenching and monolayer experiments. Biochem J 338:83–90

    Article  PubMed  CAS  Google Scholar 

  • Diakowski W, Ozimek L, Bielska E, Bem S, Langner M, Sikorski AF (2006) Cholesterol affects spectrin-phospholipid interactions in a manner different from changes resulting from alterations in membrane fluidity due to fatty acyl composition. Biochim Biophys Acta 1758:4–12

    Article  PubMed  CAS  Google Scholar 

  • Eftink MR (1991) Fluorescence techniques for studying protein structure. In: Suelter CH (ed) Methods of biochemical analysis, vol 35. John Wiley, New York, pp 127–205

    Chapter  Google Scholar 

  • Elgsaeter A, Stokke BT, Mikkelsen A, Branton D (1986) The molecular basis of erythrocyte shape. Science 234:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Florin-Christensen J, Suarez CE, Florin-Christensen M, Wainszelbaum M, Brown WC, McElwain TF, Palmer GH (2001) A unique phospholipid organization in bovine erythrocyte membranes. Proc Natl Acad Sci USA 98:7733–7741

    Article  Google Scholar 

  • Gallagher PG, Petruzzi MJ, Weed SA, Zhang Z, Marchesi SL, Mohandas N, Morrow JS, Forget BG (1997) Mutation of a highly conserved residue of βI spectrin associated with fatal and near-fatal neonatal hemolytic anemia. J Clin Invest 99:267–277

    PubMed  CAS  Google Scholar 

  • Grum VL, Dongning L, MacDonald RI, Mondragón A (1999) Structures of two repeats of spectrin suggest models of flexibility. Cell 98:523–535

    Article  PubMed  CAS  Google Scholar 

  • Guha S, Rawat SS, Chattopadhyay A, Bhattacharyya B (1996) Tubulin conformation and dynamics: a red edge excitation shift study. Biochemistry 35:13426–13433

    Article  PubMed  CAS  Google Scholar 

  • Haest CWM (1981) Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. Biochim Biophys Acta 694:331–352

    Google Scholar 

  • Haque ME, Ray S, Chakrabarti A (2000) Polarity estimate of the hydrophobic binding sites in erythroid spectrin: a study of pyrene fluorescence. J Fluoresc 10:1–6

    Article  CAS  Google Scholar 

  • Hartwig JH (1994) Actin-binding proteins 1: spectrin superfamily. Protein Profile 1:706–778

    PubMed  CAS  Google Scholar 

  • Hartwig JH (1995) Actin-binding proteins 1: spectrin superfamily. Protein Profile 2:703–800

    PubMed  CAS  Google Scholar 

  • Isenberg H, Kenna JG, Green NM, Gratzer WB (1981) Binding of hydrophobic ligands to spectrin. FEBS Lett 129:109–112

    Article  PubMed  CAS  Google Scholar 

  • Johnson RM, Taylor G, Meyer DB (1980) Shape and volume changes in erythrocyte ghosts and spectrin-actin networks. J Cell Biol 86:71–376

    Google Scholar 

  • Kahana E, Pinder JC, Smith KS, Gratzer WB (1992) Fluorescence quenching of spectrin and other red cell membrane cytoskeletal proteins. Relation to hydrophobic binding sites. Biochem J 282:75–80

    PubMed  CAS  Google Scholar 

  • Kelkar DA, Chattopadhyay A, Chakrabarti A, Bhattacharyya M (2005) Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach. Biopolymers 77:325–334

    Article  PubMed  CAS  Google Scholar 

  • Klein-Seetharaman J, Oikawa M, Grimshaw SB, Wirmer J, Duchardt E, Ueda T, Imoto T, Smith LJ, Dobson CM, Schwalbe H (2002) Long-range interactions within a nonnative protein. Science 295:1719–1722

    Article  PubMed  CAS  Google Scholar 

  • Koumanov KS, Tessier C, Momchilova AB, Rainteau D, Wolf C, Quinn PJ (2005) Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes. Arch Biochem Biophys 434:150–158

    Article  PubMed  CAS  Google Scholar 

  • Kusunoki H, Minasov G, MacDonald RI, Mondragón A (2004) Independent movement, dimerization and stability of tandem repeats of chicken brain α-spectrin. J Mol Biol 344:495–511

    Article  PubMed  CAS  Google Scholar 

  • LaBrake CC, Wang L, Keiderling TA, Fung LW-M (1993) Fourier transform infrared spectroscopic studies of the secondary structure of spectrin under different ionic strengths. Biochemistry 32:10296–10302

    Article  PubMed  CAS  Google Scholar 

  • Lange Y, Hadesman RA, Steck TL (1982) Role of the reticulum in the stability and shape of the isolated human erythrocyte membrane. J Cell Biol 92:714–721

    Article  PubMed  CAS  Google Scholar 

  • Leterrier J-F (2001) Water and the cytoskeleton. Cell Mol Biol 47:901–923

    PubMed  CAS  Google Scholar 

  • London E, Feigenson GW (1981) Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid. Biochemistry 20:1932–1938

    Article  PubMed  CAS  Google Scholar 

  • Lusitani D, Menhart N, Keiderling TA, Fung LW-M (1998) Ionic strength effect on the thermal unfolding of α-spectrin peptides. Biochemistry 37:16546–16554

    Article  PubMed  CAS  Google Scholar 

  • MacDonald RI (1993) Temperature and ionic effects on the interaction of erythroid spectrin with phosphatidylserine membranes. Biochemistry 32:6957–6964

    Article  PubMed  CAS  Google Scholar 

  • MacDonald RI, Musacchio A, Holmgren RA, Saraste M (1994) Invariant tryptophan at a shielded site promotes folding of the conformational unit of spectrin. Proc Natl Acad Sci USA 91:1299–1303

    Article  PubMed  CAS  Google Scholar 

  • Macgregor RB, Weber G (1986) Estimation of the polarity of the protein interior by optical spectroscopy. Nature 319:70–73

    Article  PubMed  CAS  Google Scholar 

  • Majee S, Chakrabarti A (1995) A DNA-binding antitumor antibiotic binds to spectrin. Biochem Biophys Res Commun 212:428–432

    Article  PubMed  CAS  Google Scholar 

  • Majee S, Dasgupta D, Chakrabarti A (1999) Interaction of the DNA-binding antitumor antibiotics, chromomycin and mithramycin with erythroid spectrin. Eur J Biochem 260:619–626

    Article  PubMed  CAS  Google Scholar 

  • Marchesi VT, Steers E (1968) Selective solubilization of a protein component of the red cell membrane. Science 159:203–204

    Article  PubMed  CAS  Google Scholar 

  • Markin VS, Kozlov MM (1988) Mechanical properties of the red cell membrane skeleton: analysis of axisymmetric deformations. J Theor Biol 133:147–167

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar M, Parrack PK, Bhattacharyya B (1992) Interaction of Prodan with tubulin. A fluorescence spectroscopic study. Eur J Biochem 204:127–132

    Article  PubMed  CAS  Google Scholar 

  • Mc Kiernan AE, MacDonald RI, MacDonald RC, Axelrod D (1997) Cytoskeletal protein binding kinetics at planar phospholipid membranes. Biophys J 73:1987–1998

    PubMed  CAS  Google Scholar 

  • McGough AM, Josephs R (1990) On the structure of erythrocyte spectrin in partially expanded membrane skeletons. Proc Natl Acad Sci USA 87:5208–5212

    Article  PubMed  CAS  Google Scholar 

  • Menhart N, Mitchell T, Lusitani D, Topouzian N, Fung LW-M (1996) Peptides with more than one 106-amino acid sequence motif are needed to mimic the structural stability of spectrin. J Biol Chem 271:30410–30416

    Article  PubMed  CAS  Google Scholar 

  • Mohandas N, Evans E (1994) Mechanochemical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct 23:787–818

    Article  PubMed  CAS  Google Scholar 

  • Mombers C, van Dijck PWM, van Deenen LLM, De Gier J, Verkleij AJ (1977) The interaction of spectrin-actin and synthetic phospholipids. Biochim Biophys Acta 470:152–160

    Article  PubMed  CAS  Google Scholar 

  • Mombers C, De Gier J, Demel RA, van Deenen LLM (1980) Spectrinphospholipid interaction: a monolayer study. Biochim Biophys Acta 603:52–62

    Article  PubMed  CAS  Google Scholar 

  • Mondal M, Chakrabarti A (2002) The tertiary amine local anesthetic dibucaine binds to the membrane skeletal protein spectrin. FEBS Lett 532:396–400

    Article  PubMed  CAS  Google Scholar 

  • Mozo-Villarias A, Morros A, Andreu JM (1991) Thermal transitions in the structure of tubulin. Eur Biophys J 19:295–300

    Article  PubMed  CAS  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  PubMed  CAS  Google Scholar 

  • Neri D, Billeter M, Wider G, Wüthrich K (1992) NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science 257:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Niggli V (2001) Structural properties of lipid-binding sites in cytoskeletal proteins. Trends Biochem Sci 26:604–611

    Article  PubMed  CAS  Google Scholar 

  • Op den Kamp JAF (1979) Lipid asymmetry in membranes. Annu Rev Biochem 48:47–71

    Article  Google Scholar 

  • O’Toole PJ, Wolfe C, Ladha S, Cherry RJ (1999) Rapid diffusion of spectrin bound to a lipid surface. Biochim Biophys Acta 1419:64–70

    Article  PubMed  CAS  Google Scholar 

  • O’Toole PJ, Morrison IEG, Cherry RJ (2000) Investigations of spectrinlipid interactions using fluoresceinphosphatidylethanolamine as a membrane probe. Biochim Biophys Acta 1466:39–46

    Article  PubMed  CAS  Google Scholar 

  • Pantazatos DP, MacDonald RI (1997) Site-directed mutagenesis of either the highly conserved Trp-22 or the moderately conserved Trp-95 to a large, hydrophobic residue reduces the thermodynamic stability of a spectrin repeating unit. J Biol Chem 272:21052–21059

    Article  PubMed  CAS  Google Scholar 

  • Pascual J, Pfuhl M, Walther D, Saraste M, Nilges M (1997) Solution structure of the spectrin repeat: a left-handed antiparallel triple-helical coiled-coil. J Mol Biol 273:740–751

    Article  PubMed  CAS  Google Scholar 

  • Phillips MD, Thomas GH (2006) Brush border spectrin is required for early endosome recycling in Drosophila. J Cell Sci 119:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Raghuraman H, Kelkar DA, Chattopadhyay A (2005) Novel insights into protein structure and dynamics utilizing the red edge excitation shift approach. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence 2005, vol 2. Plenum Press, New York, NY, pp 199–214

    Google Scholar 

  • Ralston GB (1991) Temperature and pH dependence of the self-association of human spectrin. Biochemistry 30:4179–4186

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Chakrabarti A (2003) Erythroid spectrin in micellar detergents. Cell Motil Cytoskeleton 54:16–28

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Chakrabarti A (2004) Membrane interaction of erythroid spectrin: surface-density-dependent high-affinity binding to phosphatidylethanolamine. Mol Membr Biol 21:93–100

    Article  PubMed  CAS  Google Scholar 

  • Ropson IJ, Boyer JA, Dalessio PM (2006) A residual structure in unfolded intestinal fatty acid binding protein consists of amino acids that are neighbors in the native state. Biochemistry 45:2608–2617

    Article  PubMed  CAS  Google Scholar 

  • Sahr KE, Laurila P, Kotula L, Scarpa AL, Coupal E, Leto TL, Linnenbach AJ, Winkelmann JC, Speicher DW, Marchesi VT, Curtis PJ, Forget BG (1990) The complete cDNA and polypeptide sequences of human erythroid α-spectrin. J Biol Chem 265:4434–4443

    PubMed  CAS  Google Scholar 

  • Samanta A, Fessenden RW (2000) Excited state dipole moment of PRODAN as determined from transient dielectric loss measurements. J Phys Chem A 104:8972–8975

    Article  CAS  Google Scholar 

  • Sayle RA, Milner-White EJ (1995) RasMol: biomolecular graphics for all. Trends Biochem Sci 20:374–376

    Article  PubMed  CAS  Google Scholar 

  • Shotton DM, Burke BE, Branton D (1979) The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. J Mol Biol 131:303–329

    Article  PubMed  CAS  Google Scholar 

  • Sikorski AF, Michalak K, Bobrowska M (1987) Interaction of spectrin with phospholipids. Quenching of spectrin intrinsic fluorescence by phospholipid suspensions. Biochim Biophys Acta 904:55–60

    Article  PubMed  CAS  Google Scholar 

  • Sikorski AF, Hanus-Lorenz B, Jezierksi A, Dluzewski AR (2000) Interaction of membrane skeletal protein with membrane lipid domain. Acta Biochim Polonica 47:565–578

    CAS  Google Scholar 

  • Speicher DW, Marchesi VT (1984) Erythrocyte spectrin is compromised of many homologous triple helical segments. Nature 311:177–180

    Article  PubMed  CAS  Google Scholar 

  • Streichman S, Kahana E, Silver BL (1991) EPR study of the hydrophobic interaction of spectrin with fatty acids. Biochim Biophys Acta 1066:9–13

    Article  PubMed  CAS  Google Scholar 

  • Subbarao NK, MacDonald RI, Takeshita K, MacDonald RC (1991) Characteristics of spectrin-induced leakage of extruded, phosphatidylserine vescicles. Biochim Biophys Acta 1063:147–154

    Article  PubMed  CAS  Google Scholar 

  • Subbarao NK, MacDonald RC (1994) Fluorescence studies of spectrin and its subunits. Cell Motil Cytoskeleton 29:72–81

    Article  PubMed  CAS  Google Scholar 

  • Svetina S, Iglic A, Kraij-Iglic V, Zeks B (1996) Cytoskeleton and red cell shape. Cell Mol Biol Lett 1:67–75

    Google Scholar 

  • Thomas GH, Newbern EC, Korte CC, Bales MA, Muse SV, Clark AG, Kiehart DP (1997) Intragenic duplication and divergence in the spectrin superfamily of proteins. Mol Biol Evol 14:1285–1295

    PubMed  CAS  Google Scholar 

  • Turro NJ, Kuo PL, Somasundaran P, Wong K (1986) Surface and bulk interactions of ionic and nonionic surfactants. J Phys Chem 90:288–291

    Article  CAS  Google Scholar 

  • Vertessey BG, Steck TL (1989) Elasticity of the human red cell membrane skeleton. Effects of temperature and denaturants. Biophys J 55:255–262

    Google Scholar 

  • Viel A (1999) α-Actinin and spectrin structures: an unfolding family story. FEBS Lett 460:391–394

    Article  PubMed  CAS  Google Scholar 

  • Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18:3075–3078

    Article  PubMed  CAS  Google Scholar 

  • Wichterle H, Hanspal M, Palek J, Jarolim P (1996) Combination of two mutant alpha spectrin alleles underlies a severe spherocytic hemolytic anemia. J Clin Invest 98:2300–2307

    Article  PubMed  CAS  Google Scholar 

  • Williamson P, Bateman J, Kozarsky K, Mattocks K, Hermanowicz N, Choe H-R, Schlegel RA (1982) Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. Cell 30:725–733

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann JC, Forget BG (1993) Eythroid and Nonerythroid Spectrins. Blood 81:3173–3185

    PubMed  CAS  Google Scholar 

  • Winkelmann JC, Chang J-G, Tse WT, Scarpa AL, Marchesi VT, Forget BG (1990) Full-length sequence of the cDNA for human erythroid β- spectrin. J Biol Chem 265:11827–11832

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in A. Chattopadhyay’s laboratory was supported by a grant (00-141 RG/BIO/AS) from The Third World Academy of Sciences, Trieste, Italy, and by the Council of Scientific and Industrial Research, Government of India. Work in A. Chakrabarti’s laboratory was supported by the Department of Atomic Energy, Government of India. D.A.K. thanks the Life Sciences Research Board for the award of a Postdoctoral Fellowship. A. Chattopadhyay is an Honorary Professor of the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore (India). Some of the work described in this article was carried out by former members of our research groups. We would like to thank members of the Chattopadhyay laboratory for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhijit Chakrabarti or Amitabha Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, A., Kelkar, D.A. & Chattopadhyay, A. Spectrin Organization and Dynamics: New Insights. Biosci Rep 26, 369–386 (2006). https://doi.org/10.1007/s10540-006-9024-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10540-006-9024-x

Keywords

Navigation