Skip to main content
Log in

Does nothing in evolution make sense except in the light of population genetics?

Michael Lynch: Origins of Genome Architecture, Sinauer Associates, Sunderland Mass, 2007, 340 pp, hardback, ISBN-10: 0878934847

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

The Origins of Genome Architecture” by Michael Lynch (2007) may not immediately sound like a book that someone interested in the philosophy of biology would grab off the shelf. But there are three important reasons why you should read this book. Firstly, if you want to understand biological evolution, you should have at least a passing familiarity with evolutionary change at the level of the genome. This is not to say that everyone interested in evolution should be a geneticist or a bioinformatician, but that a working knowledge of genetic change is an essential part of the intellectual toolkit of modern evolutionary biology, even if your primary focus is the evolution of behaviour or the diversity of communities. Secondly, this book provides excellent examples of another important tool in the biologist’s intellectual toolkit, but one that is rarely explained or illustrated to such an extent: null (or neutral) models. The role null models play in testing hypotheses in evolution is a central focus of this book. Thirdly, as an accomplished work of advocacy for a strictly microevolutionary view of evolution, this book provides grist for the mill for the important debate about whether population genetic processes are the sine qua non of evolutionary explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aguileta G, Bielawski JP, Yang Z (2006) Evolutionary rate variation among vertebrate β-globin genes: implications for dating gene family duplication events. Gene 380:21–29. doi:10.1016/j.gene.2006.04.019

    Article  Google Scholar 

  • Arthur W (2000) The concept of developmental reprogramming and the quest for an inclusive theory of evolutionary mechanisms. Evol Dev 2:49–57. doi:10.1046/j.1525-142x.2000.00028.x

    Article  Google Scholar 

  • Bromham L (2002) The human zoo: endogenous retroviruses in the human genome. Trends Ecol Evol 17:91–97. doi:10.1016/S0169-5347(01)02394-1

    Article  Google Scholar 

  • Burbidge AA, McKenzie NL (1989) Patterns in the modern decline of Western Australia’s vertebrate fauna: causes and conservation implications. Biol Conserv 50:143–198. doi:10.1016/0006-3207(89)90009-8

    Article  Google Scholar 

  • Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716. doi:10.1016/j.tig.2003.10.012

    Article  Google Scholar 

  • Calcott B (2009) Lineage explantions: explanating how biological mechanisms change. Br J Philos Sci (in press)

  • Caporale LH (2003) Darwin in the genome: molecular strategies in biological evolution. McGraw-Hill, New York

    Google Scholar 

  • Cardillo M, Bromham L (2001) Body size and risk of extinction in Australian mammals. Conserv Biol 15:1435–1440. doi:10.1046/j.1523-1739.2001.00286.x

    Article  Google Scholar 

  • Carroll RC (2000) Towards a new evolutionary synthesis. Trends Ecol Evol 15:27–32. doi:10.1016/S0169-5347(99)01743-7

    Article  Google Scholar 

  • Charlesworth B, Langley CH (1989) The population-genetics of drosophila transposable elements. Annu Rev Genet 23:251–287. doi:10.1146/annurev.ge.23.120189.001343

    Article  Google Scholar 

  • Chisholm R, Taylor R (2007) Null-hypothesis significance testing and the critical weight range for Australian mammals. Conserv Biol 21:1641–1645

    Google Scholar 

  • Darwin CR (1876) The effects of cross and self fertilisation in the vegetable kingdom. John Murray, London

    Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129

    Google Scholar 

  • Echols H (1981) SOS functions, cancer and inducible evolution. Cell 25:1–2. doi:10.1016/0092-8674(81)90223-3

    Article  Google Scholar 

  • Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institute Press, Washington

    Google Scholar 

  • Gregory T (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Philos Soc 76:65–101. doi:10.1017/S1464793100005595

    Article  Google Scholar 

  • Harden JH (2008) Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and reaction norms. Heredity 100:111–120. doi:10.1038/sj.hdy.6800904

    Article  Google Scholar 

  • Hersh MA, Ponder RG, Hastings PJ, Rosenberg SM (2004) Adaptive mutation and amplification in Escherischia coli: two pathways of genome adaptation under stress. Res Microbiol 155:352–359. doi:10.1016/j.resmic.2004.01.020

    Article  Google Scholar 

  • Hubbell S (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, New Jersey

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kohn M (2004) A reason for everything: natural selection and the English imagination. Faber & Faber, London

    Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinauer Associates, Sunderland Mass

    Google Scholar 

  • McClintock B (1983) The significance of responses of the genome to challenge. In: Federoff N, Botstein D (eds) Nobel prize lecture: reprinted in The dynamic genome: Barbara McClintock’s ideas in the century of genetics. 1992. Cold Spring Laboratory Press, New York

    Google Scholar 

  • Mi S, Lee X et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789. doi:10.1038/35001608

    Article  Google Scholar 

  • Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98

    Article  Google Scholar 

  • Shi P, Zhang J, Yang H, Zhang Y-P (2003) Adaptive diversification of bitter tase reecptor genes in mammalian evolution. Mol Biol Evol 20:805–814. doi:10.1093/molbev/msg083

    Article  Google Scholar 

  • Villareal LP (1997) On viruses, sex and motherhood. J Virol 71:859–865

    Google Scholar 

Download references

Acknowledgements

Many thanks to Brett Calcott, Kim Sterelny, Meg Woolfit and Rob Lanfear for helpful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindell Bromham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bromham, L. Does nothing in evolution make sense except in the light of population genetics?. Biol Philos 24, 387–403 (2009). https://doi.org/10.1007/s10539-008-9146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-008-9146-6

Keywords

Navigation