Skip to main content
Log in

Salt oversensitivity derived from mutation breeding improves salinity tolerance in barley via ion homeostasis

  • Original papers
  • Published:
Biologia Plantarum

Abstract

Salt stress imposes a major environmental threat to agriculture, therefore, understanding the basic physiology and genetics of cell under salt stress is crucial for developing any breeding strategy. In the present study, the expression profile of genes involved in ion homeostasis including salt overly sensitive (HvSOS1, HvSOS2, HvSOS3), vacuolar Na+/H+ antiporter (HvNHX1), and H+-ATPase (HVA) along with ion content measurement were investigated in two genotypes of Hordeum vulgare under 300 mM NaCl. The gene expressions were measured in the roots and shoots of a salt-tolerant mutant genotype M4-73-30 and in its wild-type cv. Zarjou by real-time qPCR technique. The critical differences between the salt-tolerant mutant and its wild-type were observed in the expressions of HvSOS1 (105-fold), HvSOS2 (24-fold), HvSOS3 (31-fold), and HVA (202-fold) genes in roots after 6-h exposure to NaCl. The parallel early up-regulation of these genes in root samples of the salt-tolerant mutant genotype indicated induction of Na+/H+ antiporters activity and Na+ exclusion into apoplast and vacuole. The earlier up-regulation of HvSOS1, HVA, and HvNHX1 genes in shoot of the wild-type genotype corresponded to the relative accumulation of Na+ which was not observed in salt-tolerant mutant genotype because of efficient inhibitory role of the root in Na+ transport to the shoot. In conclusion, the lack of similarity in gene expression patterns between the two genotypes with similar genetic background may confirm the hypothesis that mutation breeding could change the ability of salt-tolerant mutant genotype for efficient ion homeostasis via salinity oversensitivity response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CBL:

calcineurin B-like protein

CIPK:

CBL-interacting protein kinase

HVA:

H+-ATPase

NHX1:

Na+/H+ exchanger1

qPCR:

quantitative PCR

SOS:

salt overly sensitive

References

  • Apse, M.P., Blumwald, E.: Engineering salt tolerance in plants. - Curr. Opin. Biotechnol. 13: 146–150, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Apse, M.P., Blumwald, E.: Na+ transport in plants. - FEBS. Lett. 581: 2247–2254, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Apse, M.P., Sottosanto, J.B., Blumwald, E.: Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. - Plant. J. 36: 229–239, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Berthomieu, P., Conejero, G., Nublat, A., Brackenbury, W.J., Lambert, C., Savio, C., Uozumi, N., Oiki, S., Yamada, K., Cellier, F., Gosti, F., Simonneau, T., Essah, P.A., Tester, M., Véry, A.A., Sentenac, H., Casse, F.: Functional analysis of AtHKT1 in Arabidopsis shows that Na(+) recirculation by the phloem is crucial for salt tolerance. - EMBO. J. 22: 2004–2014, 2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blumwald, E.: Sodium transport and salt tolerance in plants. - Curr. Opin. cell. Biol. 12: 431–434, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Blumwald, E., Aharon, G.S., Apse, M.P.: Sodium transport in plant cells. - Biochim. biophys. Acta 1465: 140–151, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Cakirlar, H., Bowling, D.F.J.: The effect of salinity on the membrane potential of sunflower roots. - J. exp. Bot. 32: 479–485, 1981.

    Article  Google Scholar 

  • Chen, Z.H., Pottosin, I.I., Cuin, T.A., Fuglsang, A.T., Tester, M., Jha, D., Zepeda-Jazo, I., Zhou, M., Palmgren, M.G., Newman, I.A., Shabala, S.: Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley. - Plant. Physiol. 145: 1714–1725, 2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinnusamy, V., Zhu, J., Zhu, J.K.: Salt stress signaling and mechanisms of plant salt tolerance. - Genet. Eng. 27: 141–177, 2006.

    Article  CAS  Google Scholar 

  • Colmer, T.D., Munns, R., Flowers, T.J.: Improving salt tolerance of wheat and barley: future prospects. - Aust. J. exp. Agr. 45: 1425–1443, 2005.

    Article  CAS  Google Scholar 

  • Cuin, T.A., Shabala, S.: Potassium homeostasis in salinised plant tissues. - In: Volkov, ?. (ed.): Plant Electrophysiology? Theory and Methods. Pp. 287–317. Springer, Heidelberg 2006.

    Chapter  Google Scholar 

  • Dietz, K.J., Tavakoli, N., Kluge, C., Mimura, T., Sharma, S.S., Harris, G.C., Chardonnens, A.N., Golldack, D.: Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. - J. exp. Bot. 52: 1969–1980, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ding, F., Yang, J.C., Yuan, F., Wang, B.S.: Progress in mechanism of salt excretion in recretohalopytes. - Front. Biol. 5: 164–170, 2010.

    Article  Google Scholar 

  • Fukuda, A., Chiba, K., Maeda, M., Nakamura, A., Maeshima, M., Tanaka, Y.: Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. - J. exp. Bot. 397: 585–594, 2004.

    Article  Google Scholar 

  • Garbarino, J., Dupont, F.M.: NaCl induces a Na+/H+ antiport in tonoplast vesicles from barley roots. - Plant. Physiol. 86: 231–6, 1988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halfter, U., Ishitani, M., Zhu, J.K.: The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium binding protein SOS3. - Proc. nat. Acad. Sci. USA 97: 3735–3740, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Harmon, A.C., Gribskov, M., Gubrium, E., Harper, J.F.: The CDPK superfamily of protein kinases. - New Phytol. 151: 175–183, 2001.

    Article  CAS  Google Scholar 

  • Hasegawa, P.M.: Sodium (Na+) homeostasis and salt tolerance of plants. - Environ. exp. Bot. 92: 19–31, 2013.

    Article  CAS  Google Scholar 

  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J.: Plant cellular and molecular responses to high salinity. - Annu. Rev. Plant. Physiol. Plant. mol. Biol. 51: 463–499, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, F., Horie, T.: A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. - Plant. Cell Environ. 33: 552–565, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Horie, T., Schroeder, J.I.: Sodium transporters in plants. Diverse genes and physiological functions. - Plant. Physiol. 136: 2457–2462, 2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jannesar, M., Razavi, K.H., Saboora, A.: Effects of salinity on expression of the salt overly sensitive genes in Aeluropus lagopoides. - Aust. J. Crop Sci. 8: 1–8, 2014.

    Google Scholar 

  • Kader, M.A., Lindberg, S.: Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L., determined by the fluorescent dye. - J. exp. Bot. 56: 3149–3158, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Kiani, D., Soltanloo, H., Ramezanpour, S.S., Nasrolahnezhad Qumi, A.A., Yamchi, A., Zaynali Nezhad, K.H., Tavakol, E.: A barley mutant with improved salt tolerance through ion homeostasis and ROS scavenging under salt stress. - Acta Physiol. Plant. 39: 90, 2017.

    Article  CAS  Google Scholar 

  • Leigh, R.A.: Potassium homeostasis and membrane transport. - J. Plant. Nutr. Soil Sci. 164: 193–198, 2001.

    Article  CAS  Google Scholar 

  • Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. - Methods 25: 402–408, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Luttge, U., Fischer-Schliebs, E., Ratajczak, R.: The H+ pumping V-ATPase of higher plants: a versatile “ecoenzyme” in response to environmental stress. - Cell. Biol. Mol. Lett. 6: 356–361, 2001.

    Google Scholar 

  • Maathuis, F.J.M., Amtmann, A.: K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. - Ann. Bot. 84: 123–133, 1999.

    Article  CAS  Google Scholar 

  • Mahluji, M., Mal Verdi, Q., Afyuni, D., Jafari, A., DorchehI, M.A., Sadeqi, D., Yusefi, A.: Introducing and comparing of salinity tolerant barley lines (4 and 5) to local cultivar in onfarm trial. - https://doi.org/agris.fao.org/agrissearch/search.do?recordID=IR2008000425, 2007.

  • Martinez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.K., Pardo, J.M., Quintero, F.J.: Conservation of the salt overly sensitive pathway in rice. - Plant Physiol. 143: 1001–1012, 2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maser, P., Eckelman, B., Vaidyanathan, R., Fairbain, D.J., Kubo, M., Yamagami, M., Yamaguchi, K., Nishimura, M., Uozumi, N., Robertson, W., Sussman, M.R., Schroeder, J.I.: Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. - FEBS Lett. 531: 157–161, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Maughan, P.J., Turner, T.B., Coleman, C.E., Elzinga, D.B., Jellen, E.N., Morales, J.A., Udall, J.A., Fairbanks, D.J., Bonifacio, A.: Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd). - Genome 52: 647–657, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Munns, R., Tester, M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant. Biol. 59: 651–681, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Oh, D.H., Gong, Q., Ulanov, A., Zhang, Q., Li, Y., Ma, W., Yun, D.J., Bressan, R.A., Bohnert, H.J.: Sodium stress in the halophyte the Tellungiella halophyla and transcriptional changes in a ThSOS-RNA interference line. - J. integr. Plant Biol. 49: 1484–1496, 2007.

    Article  CAS  Google Scholar 

  • Palmgren, M.G.: Plant plasmembrane H+-ATPases: powerhouses for nutrient uptake. - Annu. Rev. Plant. Physiol. Plant. mol. Biol. 52: 817–845, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl, M.W., Hegeleit, M.: Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. - Biotechnol. Lett. 23: 275–282, 2001.

    Article  CAS  Google Scholar 

  • Pfaffl, M.W., Horgan, G.W., Dempfle, L.: Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. - Nucl. Acids Res. 30: e36, 2002.

    Article  PubMed  Google Scholar 

  • Qiu, Q.S., Barkla, B.J., Vera-Estrella, R., Zhu, J.K., Schumaker, K.S.: Na+/H+ exchange activity in the plasma membrane of Arabidopsis. - Plant Physiol. 132: 1041–1052, 2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu, Q.S., Guo, Y., Quintero, F.J., Pardo, J.M., Schumaker, K.S., Zhu, J.K.: Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. - J. biol. Chem. 279: 207–215, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Rezaei Moshaei, M., Nematzadeh, G.H.A., Askari, H., Mozaffari Nejad, A.S., Pakdin, A.: Quantitative gene expression analysis of some sodium ion transporters under salinity stress in Aeluropus littoralis. - Saudi. J. biol. Sci. 21: 394–399, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rus, A., Lee, B.H., Munoz-Mayor, A., Sharkhuu, A., Miura, K., Zhu, J.K., Bressan, R.A., Hasegawa, P.M.: AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. - Plant Physiol. 136: 2500–2511, 2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schachtman, D.P., Lagudah, E.S., Munns, R.: The expression of salt tolerance from Triticum tauschii in hexaploid wheat. - Theor. appl. Genet. 84: 714–719, 1992.

    PubMed  CAS  Google Scholar 

  • Shabala, S.: Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. - Plant. Cell Environ. 23: 825–837, 2000.

    Article  CAS  Google Scholar 

  • Shabala, S., Cuin, T.A.: Potassium transport and plant salt tolerance. - Physiol. Plant. 133: 651–669, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Shabala, S.N., Shabala, L., Van Volkenburgh, E.: Effect of calcium on root development and root ion fluxes in salinised barley seedlings. - Funct. Plant Biol. 30: 507–514, 2003.

    Article  CAS  Google Scholar 

  • Shabala, S., Shabala, S., Cuin, T.A., Pang, J., Percey, W., Chen, Z., Conn, S., Eing, C.H., Wegner, L.H.: Xylem ionic relations and salinity tolerance in barley. - Plant J. 61: 839–853, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Shavrukov, Y., Gupta, N.K., Miyazaki, J., Baho, M.N., Kenneth, J., Chalmers, K.J., Tester, M., Langridge, P.C., Collins, N.: HvNax3-a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). - Funct. integr. Genomics 10: 277–291, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Shi, H., Ishitani, M., Kim, C., Zhu, J.K.: The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. - Proc. nat. Acad. Sci. USA 97: 6896–6901, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Shi, H., Quintero, F.J., Pardo, J.M., Zhu, J.K.: The putative plasma membrane Na+/H+ antiporter SOS1 controls long distance Na+ transport in plants. - Plant Cell 14: 465–477, 2002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stevens, T.H., Forgac, M.: Structure, function and regulation of the vacuolar (H+)-ATPase. - Annu. Rev. cell. dev. Biol. 13: 779–808, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Tavakoli, F., Vazan, S., Moradi, F., Shiran, B., Sorkheh, K.: Differential response of salt-tolerant and susceptible barley genotypes to salinity stress. - J. Crop. Improvement 24: 244–260, 2010.

    Article  CAS  Google Scholar 

  • Tester, M., Davenport, R.: Na+ tolerance and Na+ transport in higher plants. - Ann. Bot. 91: 503–527, 2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volkov, V., Amtmann, A.: Thellungiella halophyla, a salttolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. - Plant J. 48: 342–353, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Volkov, V., Wang, B., Dominy, P.J., Fricke, W., Amtmann, A.: Thellungiella halophyla, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. - Plant Cell Environ. 27: 1–14, 2004.

    Article  CAS  Google Scholar 

  • Walia, H., Wilson, C., Wahid, A., Condamine, P., Cui, X., Close, T.J.: Expression analysis of barley (Hordeum vulgare L.) during salinity stress. - Funct. integr. Genomics 6: 143, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Zhang, Y.D., Perez, P.G., Deng, Y.W., Li, Z.Z., Huang, D.F.: Isolation and characterization of a vacuolar Na+/H+ antiporter gene from Cucumis melo L. - Afr. J. Biotechnol. 10: 1752–1759, 2011.

    CAS  Google Scholar 

  • Wang, P., Xue, L., Batelli, G., Lee, S., Hou, Y.J., Van Oosten, M.J., Zhang, H., Tao, W.A., Zhu, J.K.: Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. - Proc. nat. Acad. Sci. USA 110: 11205–11210, 2013.

    Article  PubMed  Google Scholar 

  • Wei, W., Bilsborrow, P.E., Hooley, P., Fincham, D.A., Lombi, E., Forster, B.P.: Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. - Plant Soil 250: 183–191, 2003.

    Article  CAS  Google Scholar 

  • Williams, V., Twine, S.: Flame photometric method for sodium, potassium and calcium. - Modern Meth. Plant Anal. 5: 3–5, 1960.

    Google Scholar 

  • Wu, D., Shen, Q., Qiu, L., Han, Y., Ye, L., Jabeen, Z., Shu, Q., Zhang, G.: Identification of proteins associated with ion homeostasis and salt tolerance in barley. - Proteomics 14: 1381–1392, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H.X., Jiang, X.Y., Zhan, K.H., Cheng, X.Y., Chen, X.J., Pardo, J.M., Cui, D.: Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. - Arch. Biochem. Biophys. 473: 8–15, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, T., Hamamoto, S., Uozumi, N.: Sodium transport system in plant cells. - Front. Plant. Sci. 4: 410, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, L., Liu, H., Fu, S.M., Ge, H.M., Tang, R.J., Yang, Y., Wang, H.H., Zhang, H.X.: Na+/H+ and K+/H+ antiporters AtNHX1 and AtNHX3 from Arabidopsis improve salt and drought tolerance in transgenic poplar. - Biol. Plant. 61: 641–650, 2017.

    Article  CAS  Google Scholar 

  • Yang, Q., Chen, Z.Z., Zhou, X.F., Yin, H.B., Li, X., Xin, X.F., Hong, X.H., Zhu, J.K., Gong, Z.: Over expression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. - Mol. Plants 1: 22–31, 2009.

    Article  CAS  Google Scholar 

  • Yokoi, S., Quintero, F.J., Cubero, B., Ruiz, M.T., Bressan, R.A., Hasegawa, P.M., Pardo, J.M.: Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. - Plant. J. 30: 529–539, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H.X., Blumwald, E.: Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. - Nat Biotechnol. 19: 765–768, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H.X., Hodson., J.N., Williams, J.P., Blumwald, E.: Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. - Proc. nat. Acad. Sci. USA. 98: 12832–12836, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, G.H., Su, Q., An, L.J., Wu, S.: Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. - Plant. Physiol. Biochem. 46: 117–126, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Zhonghua, C., Pottosin, I.I., Tracey, A., Cuin, T.A., Fuglsang, A.T., Tester, M., Deepa, J.h., Zepeda-Jazo, I., Zhou, M., Palmgren, M.G., Newman, I.A., Shabala, S.: Root plasma transporters controlling K+/Na+ homeostasis in salt stressed barley. - Plant Physiol. 145: 1714–1725, 2007.

    Article  CAS  Google Scholar 

  • Zhu, J.K.: Genetic analysis of plant salt tolerance using Arabidopsis. - Plant. Physiol. 124: 941–948, 2000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Soltanloo.

Additional information

Acknowledgment: The authors would like to acknowledge the financial support received from the Faculty of Plant Production, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. The authors would like to thank the Seed and Plant Improvement Institute, Karaj, Iran, for the provision of seed material.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefirad, S., Soltanloo, H., Ramezanpour, S.S. et al. Salt oversensitivity derived from mutation breeding improves salinity tolerance in barley via ion homeostasis. Biol Plant 62, 775–785 (2018). https://doi.org/10.1007/s10535-018-0823-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-018-0823-2

Additional key words

Navigation