Skip to main content
Log in

Responses of Pinus massoniana seedlings to lead stress

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

To investigate the biochemical and physiological responses of Masson pine (Pinus massoniana Lamb.) seedlings to lead stress, needles, stems, and roots of two-year-old seedlings were treated with 207PbCO3 for 33 d and then analyzed 1 and 7 d after the treatment was completed. Chlorophyll (Chl) b responded more sensitively than Chl a to needle Pb treatment, and the Chl content in the needles significantly decreased after Pb application to roots. The malondialdehyde and proline content remained almost unchanged, but superoxide dismutase and catalase activities increased on day 1 after all ways of Pb application. The reduced glutathione (GSH) content and GSH/oxidized glutathione ratio increased on day 1 after Pb application to stem or needles compared to the controls. At 7 d after the Pb application, the increase in dehydroascorbate (DHA) content and the decrease in the ascorbate (AsA)/DHA ratio implied a decreased antioxidant capacity of AsA. The results indicated that the antioxidants were sensitive to the Pb treatments and might be involved in the Masson pine tolerance to Pb stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

AsA:

ascorbate

CAT:

catalase

Car:

carotenoids

Chl:

chlorophyll

DHA:

dehydroascorbate

GSH:

reduced glutathione

GSSG:

oxidized glutathione

MDA:

malondialdehyde

Pro:

proline

SOD:

superoxide dismutase

References

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulganis. — Plant Physiol. 24: 1–15, 1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz, A., Martin-Tanguy, J., Larher, F.: Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. — Physiol. Plant. 104: 195–202, 1998.

    Article  CAS  Google Scholar 

  • Bates, L.E., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Drazkiewicz, M., Skorzynska-Polit, E., Krupa, Z.: Response of the ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana. — Plant Sci. 164: 195–202, 2003.

    Article  CAS  Google Scholar 

  • Fernandez, C., Monna, F., Labanowski, J., Loubet, M., Van Oort, F.: Anthropogenic lead distribution in soils under arable land and permanent grassland estimated by Pb isotopic compositions. — Environ. Pollut. 156: 1083–1091, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C.H., Descourvières, P., Kunert, K.J.: Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. — Plant Cell. Environ. 17: 507–523, 1994.

    Article  CAS  Google Scholar 

  • Giannopolitis, C.N., Ries, S.K.: Superoxide dismutase II. Purification and quantitative relationship with water-soluble protein in seedings. — Plant Physiol. 59: 315–318, 1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith, O.W.: Determination of glutathione disulphide using glutathione reductase and 2-vinylpyridine. — Anal. Biochem. 6: 207–212, 1980.

    Article  Google Scholar 

  • Kosugi, H., Kikugawa, K.: Thiobarbituric acid reaction of aldehyes and oxidized lipids in glacial acetic acid. — Lipids 20: 915–920, 1985.

    Article  CAS  Google Scholar 

  • Kuang, Y.W., Sun, F.F., Wen, D.Z., Zhou, G.Y., Zhao, P.: Tree-ring growth patterns of Masson pine (Pinus massoniana L.) during the recent decades in the acidification Pearl River delta of China. — Forest Ecol. Manage. 255: 3534–3540, 2008.

    Article  Google Scholar 

  • Kumar, A., Prasad, M.N.V., Sytar, O.: Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. — Chemosphere 89: 1056–1065, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Law, M.Y., Charles, S.A., Halliwell, B.: Glutathione and ascorbic acid and spinach (Spinacea oleracea) chloroplasts: the effect of hydrogen peroxide and paraquat. — Biochem. J. 210: 899–903, 1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, T.M., Chang, Y.C.: An increase of ornithine δ-aminotransferase-mediated proline synthesis in relation to high-temperature injury in Gracilaria tenuistipitata (Gigartinales, Rhodophyta). — J. Phycol. 35: 84–88, 1999.

    Article  Google Scholar 

  • Maheshwari, R., Dubey, R.S.: Nickel induced oxidative stress and the role of antioxidant defense in rice seedlings. — Plant Growth Regul. 59: 37–49, 2009.

    Article  CAS  Google Scholar 

  • Maldonado-Magaña, A., Favela-Torres, E., Rivera-Cabrera, F., Volke-Sepulveda, T.L.: Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production. — Plant Soil 339: 377–389, 2011.

    Article  Google Scholar 

  • Mishra, S., Dubey, R.S.: Heavy metal toxicity induced alterations in photosynthetic metabolism in plants. — In: Pessarakli, M. (ed.): Handbook of Photosynthesis. 2nd Ed. Pp. 845–863. CRC Press, Taylor and Francis Group, NewYork 2005.

    Google Scholar 

  • Mishra, S., Srivastava, S., Tripathi, R.D., Kumar, R., Seth, C.S., Gupta D.K.: Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. — Chemosphere 65: 1027–1039, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Ouzounidou, G., Symeonidis, L., Babalonas, D., Karataglis, S.: Comparative responses of a copper-tolerant and a copper sensitive population of Minuartia hirsuta to copper toxicity. — J. Plant Physiol. 144: 109–115, 1994.

    Article  CAS  Google Scholar 

  • Pellny, T.K., Locato, V., Vivancos, P. D., Markovic, J., De Gara, L., Pallardó, F.V., Foyer, C.H.: Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. — Mol. Plant. 2: 442–456, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Piechalak, A., Tomaszewska, B., Baralkiewicz, D., Malecka, A.: Accumulation and detoxification of lead ions in legumes. — Phytochemistry 60: 153–162, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Rashid, A., Camm, E.L., Ekramoddoullah, K.M.: Molecular mechanism of action of Pb2+ and Zn2+ on water oxidizing complex of photosystem II. — FEBS Lett. 350: 296–298, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., Dubey, R.S.: Lead toxicity in plants. — Brazilian J. Plant Physiol. 17: 35–52, 2005.

    Article  CAS  Google Scholar 

  • Shu, X., Yin, L.Y., Zhang, Q.F., Wang, W.B.: Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. — Environ. Sci. Pollut. 19: 893–902, 2012.

    Article  CAS  Google Scholar 

  • Singh, S., Eapen, S., Souza, S.F.: Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. — Chemosphere 62: 233–246, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y.L., Dong, Y.J., Tian, X.Y., Kong, J., Bai, X.Y., Xu, L.L., He Z.L.: Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency. — Biol. Plant. 60: 329–342, 2016.

    Article  CAS  Google Scholar 

  • Srivastava, S., Dubey, R.S.: Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. — Plant Growth Regul. 64: 1–16, 2011.

    Article  CAS  Google Scholar 

  • Srivastava, R.K., Pandey, P., Rajpoot, R., Rani, A., Dubey, R.S.: Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. — Protoplasma 251: 1047–1065, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Stroinski, A., Kozlowska, M.: Cadmium-induced oxidative stress in potato tuber. — Acta Soc. Bot. Polon. 66: 189–195, 1997.

    Article  CAS  Google Scholar 

  • Szabados, L., Savouré, A.: Proline: a multifunctional amino acid. — Trends Plant Sci. 15: 89–97, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y.T., Qiu, R.L., Zeng, X.W., Ying, R.R., Yu, F.M., Zhou, X.Y.: Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. — Environ. exp. Bot. 66: 126–134, 2009.

    Article  CAS  Google Scholar 

  • Vazquez, M.D., Poschenrieder, C., Barcelo, J.: Chromium (VI) induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris). — Ann. Bot. 59: 427–438, 1987.

    Article  CAS  Google Scholar 

  • Verma, S., Dubey, R.S.: Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. — Plant Sci. 164: 645–655, 2003.

    Article  CAS  Google Scholar 

  • Vodnik, D., Godbold D.L., Jentschke, G., Fritz, E., Gogala, N.: Root-applied cytokinin reduces lead uptake and affects its distribution in norway spruce seedlings. — Physiol. Plant. 106: 75–81, 1999.

    Article  CAS  Google Scholar 

  • Yan, Z.Z., Tam, N.F.Y.: Effects of lead stress on anti-oxidative enzymes and stress-related hormones in seedlings of Excoecaria agallocha Linn. — Plant Soil 367: 327–338, 2013.

    Article  CAS  Google Scholar 

  • Zeng, S.X., Wang, Y.R., Liu, H.X.: Some enzymatic reactions related to chlorophyll degradation in cucumber cotyledons under chilling in the light. — Acta phytophysiol. sin. 17: 177–182, 1991.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. W. Kuang.

Additional information

Acknowledgments: The study was financially supported by the General program of the National Natural Science Foundation of China (Grant Nos. 30972365, 31570401, and 41471443).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L.L., Zhu, X.M. & Kuang, Y.W. Responses of Pinus massoniana seedlings to lead stress. Biol Plant 61, 785–790 (2017). https://doi.org/10.1007/s10535-017-0710-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0710-2

Additional key words

Navigation