Skip to main content
Log in

Microwaves affect Myriophyllum aquaticum plants differently depending on the wave polarization

  • Original Paper
  • Published:
Biologia Plantarum

Abstract

Previous studies on microwave exposure on plants have revealed variations in sensitivity of plants to different microwave frequencies, exposure durations, and power intensities. However, the effects of different polarizations of microwaves on plants have not been studied. Therefore, we investigated the effect of horizontally and vertically polarized 2 GHz continuous microwaves on Myriophyllum aquaticum plants at 1.8 W m-2 power density. The electric potential variation along the vascular tissues were investigated for 1.5 h and growth parameters, pigmentation, and H2O2 formation were studied during 48 h microwave exposure. Exposure to horizontally polarized microwaves, decreased standard deviation of electric potential variation and increased H2O2 content significantly. Vertically polarized microwaves increased the standard deviation of electric potential variation and photosynthetic pigments significantly. However, none of the polarizations altered growth parameters (shoot length, stem diameter, and internodal length). Thermographic images taken for 1 h continuous microwave exposure did not indicate alteration in the temperature of the plants for both vertical and horizontal polarities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EMR:

electromagnetic radiation

EP:

electric potential

hPol:

horizontally polarized

on-EMR:

during microwave exposure

post-EMR:

post microwave exposure

pre-EMR:

before microwave exposure

ROS:

reactive oxygen species

Rx:

receiving

SDEP:

standard deviation of the electric potential fluctuations

Tx:

transmission

vPo:

vertically polarized

References

  • Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant. Biol. 55: 373–399, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf, M., Foolad, M.R.: Roles of glycine betaine and proline in improving plant abiotic stress resistance. — Environ. exp. Bot. 59: 206–216, 2007.

    Article  CAS  Google Scholar 

  • Ben-Gal, A., Shani, U.: Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. — Plant Soil 247: 211–221, 2002.

    Article  CAS  Google Scholar 

  • Cheeseman, J.M.: Hydrogen peroxide and plant stress: a challenging relationship. — Plant Stress 1: 4–15, 2007.

    Google Scholar 

  • Cho, M.R., Thatte, H.S., Silvia, M.T., Golan, D.E.: Transmembrane calcium influx induced by ac electric fields. — Faseb. J. 13: 677–683, 1999.

    CAS  PubMed  Google Scholar 

  • Dhawi, F., Al-Khayri, J.M.: Magnetic fields induce changes in photosynthetic pigments content in date palm (Phoenix dactylifera L.) seedlings. — TOASJ 3: 1–5, 2009.

    Article  CAS  Google Scholar 

  • Felle, H., Zimmermann, M.: Systemic signalling in barley through action potentials. — Planta 226: 203–214, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Fromm, J., Lautner, S.: Electrical signals and their physiological significance in plants. — Plant Cell Environ. 30: 249–257, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Gechev, T.S., Hille, J.: Hydrogen peroxide as a signal controlling plant programmed cell death. — J. cell. Biol. 168: 17–20, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes, P.I.A., Asaeda, T.: Spatial and temporal heterogeneity of Eragrostis curvula in the downstream flood meadow of a regulated river. — Ann. Limnol., Int. J. Limnol. 45: 181–193, 2009.

    Article  Google Scholar 

  • Jacob, J., Chia, L.H.L., Boey, F.Y.C.: Thermal and non-thermal interaction of microwave radiation with materials. — J. Mater. Sci. 30: 5321–5327, 1995.

    Article  CAS  Google Scholar 

  • Janská, A., Maršík, P., Zelenková, S., Ovesná, J.: Cold stress and acclimation - what is important for metabolic adjustment?. — Plant Biol. 12: 395–405, 2010.

    Article  PubMed  Google Scholar 

  • Kato, R.: Effects of a magnetic-field on the growth of primary roots of Zea mays. — Plant Cell Physiol. 29: 1215–1219, 1998.

    Google Scholar 

  • Liboff, A.R., Cherng, S., Jenrow, K.A., Bull, A.: Calmodulindependent cyclic nucleotide phosphodiesterase activity is altered by 20 μT magnetostatic fields. — Bioelectromagnetics 24: 32–38, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Lindströum, E., Lindströum, P., Berglund, A., Mild, K. H., Lundgren, E.: Intracellular calcium oscillations induced in a T-cell line by a weak 50 Hz magnetic field. — J. Cell Physiol. 156: 395–398, 1993.

    Article  Google Scholar 

  • Moreno, J.E., Shyu, C., Campos, M.L., Patel, L.C., Chung, H.S., Yao, J., He, S.Y., Howe, G.A.: Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10. — Plant Physiol. 162: 1006–1017, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrov, V.D., Van Breusegem, F.: Hydrogen peroxide - a central hub for information flow in plant cells. — AoB Plants 2012: pls014, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Răcuciu, M.: Influence of extremely low frequency magnetic field on assimilatory pigments and nucleic acids in Zea mays and Curcubita pepo seedlings. — Rom. Biotech. Lett. 17: 7662–7672, 2012.

    Google Scholar 

  • Răcuciu, M., Miclăuş, S.: Low-level 900 MHz electromagnetic field influence on vegetal tissue. — Rom. J. Biophys. 17: 149–156, 2007.

    Google Scholar 

  • Ray, J.D., Sinclair, T.R.: The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. — J. exp. Bot., 49: 1381–1386, 1998.

    Article  CAS  Google Scholar 

  • Reyes-Diaz, M., Alberdi, M., Mora, M.D.: Short-term aluminum stress differentially affects the photochemical efficiency of photosystem II in highbush blueberry genotypes. — J. amer. Soc. hort. Sci. 134: 14–21, 2009.

    Google Scholar 

  • Roux, D., Vian, A., Girard, S., Bonnet, P., Paladian, F., Davies, E., Ledoigt, G.: Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. — Physiol. Plant. 128: 283–288, 2006.

    Article  CAS  Google Scholar 

  • Satterfield, C.N., Bonnell, A.H.: Interferences in the titanium sulfate method for hydrogen peroxide. — Anal. Chem. 27: 1174–1175, 1955.

    Article  CAS  Google Scholar 

  • Senavirathna, M.D.H.J., Asaeda, T.: The significance of microwaves in the environment and its effect on plants. — Environ. Rev. 22: 220–228, 2013.

    Google Scholar 

  • Senavirathna, M.D.H.J., Asaeda, T.: Radio-frequency electromagnetic radiation alters the electric potential of Myriophyllum aquaticum. — Biol. Plant. 58: 355–362, 2014.

    Article  CAS  Google Scholar 

  • Senavirathna, M.D.H.J., Takashi, A., Kimura, Y.: Shortduration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor). — Electromagn. Biol. Med. 33: 327–334, 2013.

    Article  PubMed  Google Scholar 

  • Sharma, V.P., Singh, H.P., Kohli, R.K., Batish, D.R.: Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. — Sci. total Environ. 407: 5543–5547, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Tkalec, M., Malaric, K.I., Pevalek-Kozlina, B.: Influence of 400, 900, and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity. — Bioelectromagnetics 26: 185–193, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Tkalec, M., Malaric, K., Pevalek-Kozlina, B.: Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. — Sci. total Environ. 388: 78–89, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Ursache, M., Mindru, G., Creangă, D.E., Tufescu, F.M., Goiceanu, C.: The effects of high frequency electromagnetic waves on the vegetal organisms. — Rom. J. Phys. 54: 133–145, 2007.

    Google Scholar 

  • Wasternack, C., Hause, B.: Jasmonates and octadecanoids: signals in plant stress responses and development. — Progr. Nucl. Acid Res. mol. Biol. 72: 165–221, 2002.

    Article  CAS  Google Scholar 

  • Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. — J. Plant. Physiol. 144: 307–313, 1994.

    Article  CAS  Google Scholar 

  • Yang, T.: Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. — Proc. nat. Acad. Sci. USA 99: 4097–4102, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. H. J. Senavirathna.

Additional information

Acknowledgements: The authors would like to thank Prof. Hirofumi Kadono and Dr. Makoto Miwa for their supports during the study and Prof. Yuichi Kimura and Mr. Sakuyoshi Saito for their support in the preparation of the microwave exposure system. This work was financially supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senavirathna, M.D.H.J., Asaeda, T. Microwaves affect Myriophyllum aquaticum plants differently depending on the wave polarization. Biol Plant 61, 378–384 (2017). https://doi.org/10.1007/s10535-016-0660-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0660-0

Additional key words

Navigation