Skip to main content
Log in

Phenylalanine biosynthesis and its relationship to accumulation of capsaicinoids during Capsicum chinense fruit development

  • Original papers
  • Published:
Biologia Plantarum

Abstract

Activities of phenylalanine (Phe) biosynthetic enzymes chorismate mutase (CM) and arogenate dehydratase (ADT) and of phenylalanine ammonia lyase [PAL, an enzyme that directs Phe towards capsaicinoid (CAP) synthesis] were analyzed during Capsicum chinense Jacq. (habanero pepper) fruit development. A maximum CM activity coincided with a maximum CAP accumulation. However, ADT exhibited two activity peaks, one during the early phase (10 - 17 days post-anthesis, DPA) and another during the late phase (35 - 37 DPA); only the latter coincided with CAP. Interestingly, PAL activity was inversely related to CAP accumulation; lower activities coincided with a maximum CAP content. These results suggest the operation of a control mechanism that coordinated Phe synthesis and its channeling towards CAP synthesis during the course of fruit development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADT:

arogenate dehydratase

CAP:

capsaicinoids

CM:

chorismate mutase

DPA:

days post-anthesis

f.m.:

fresh mass

PAL:

phenylalanine ammonia lyase

Phe:

phenylalanine

References

  • Ancona-Escalante, W., Baas-Espinola, F., Castro-Concha, L., Vázquez-Flota, F., Zamudio-Maya, M., Miranda-Ham, M.L.: Induction of capsaicinoid accumulation in placental tissues of Capsicum chinense Jacq. requires primary ammonia assimilation. — Plant Cell Tissue Organ Cult. 113: 565–570, 2013.

    Article  CAS  Google Scholar 

  • Aza-González, C., Núñez-Palenius, H., Ochoa-Alejo, N.: Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). — Plant Cell Rep. 30: 695–706, 2011.

    Article  PubMed  Google Scholar 

  • Boerjan, W., Ralph, J., Baucher, M.: Lignin biosynthesis. — Annu. Rev. Plant Biol. 54: 519–546, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Cho, M.H., Corea, O.R.A., Ynag, H., Bedgar, D.L., Laskar, D.D., Anterola, A.M., Moog-Anterola, F.A., Hood, R.L., Kohalmi, S.E., Bernards, M.A., Kang, C., Davin, L.B., Lewis, N.G.: Phenylalanine biosynthesis in Arabidopsis thaliana. — J. biol. Chem. 282: 30827–30835, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Cocking, E.C., Yemm, E.: Estimation of amino acids by ninhydrin. - Biochem. J. 58 (330th meeting): xii, 1954.

    CAS  PubMed  Google Scholar 

  • Collins, M.D., Wasmund, L.M., Bosland, P.W.: Improved method for quantifying capsaicinoids in Capsicum using high-performance liquid chromatography. — HortScience 30: 137–139, 1995.

    CAS  Google Scholar 

  • Connelly, J.A., Siehl, D.L.: Purification of chorismate, prephenate, and arogenate by HPLC. — Methods Enzymol. 142: 422–431, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Padilla, M., Yahia, E.M.: Changes in capsaicinoids during development, maturation, and senescence of chilli peppers and relation with peroxidase activity. — J. Agr. Food Chem. 46: 2075–2079, 1998.

    Article  CAS  Google Scholar 

  • Cotton, R.G.H., Gibson, F.: The biosynthesis of phenylalanine and tyrosine; enzymes converting chorismic acid into prephenic acid and their relationships to prephenate dehydratase and prephenate dehydrogenase. — Biochim. biophys. Acta 100: 76–88, 1965.

    Article  CAS  PubMed  Google Scholar 

  • Curry, J., Aluru, M., Mendoza, M., Nevarez, J., Melendrez M., O’Connell, M.A.: Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. — Plant Sci. 148: 47–57, 1999.

    Article  CAS  Google Scholar 

  • Fisher, R., Jensen, R.: Arogenate dehydratase. — Method. Enzymol. 142: 495–502, 1987.

    Article  Google Scholar 

  • Gou, J.Y., Felippes, F.F., Liu, C.J., Weigel, D., Wang, J.W.: Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. — Plant Cell 23: 1512–1522, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann, K.M., Weaver, L.M.: The shikimate pathway. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 473–503, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D.S., Hwang, B.K.: An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. — J. exp. Bot. 65: 2295–2306, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Park, M., Yeom, S.I., Kim, Y.M., Lee, J.M., Lee, H.A., Seo, E., Choi, J., Cheong, K., Kim, K.T., Jung, K., Lee, G.W., Oh, S.K., Bae, C., Kim, S.B., Lee, H.Y., Kim, S.Y., Kim, M.S., Kang, B.C., Jo, Y.D., Yang, H.B., Jeong, H.J., Kang, W.H., Kwon, J.K., Shin, C., Lim, J.Y., Park, J.H., Huh, J.H., Kim, J.S., Kim, B.D., Cohen, O., Paran, I., Suh, M.C., Lee, S.B. Kim, Y.K., Shin, Y., Noh, S.J., Park, J., Seo, Y.S., Kwon, S.Y., King, H.A., Park, J.M., Kim, H.J., Choi, S.B., Bosland, P.W., Reeves, G., Jo, S.H., Lee, B.W., Cho, H.T., Choi, H.S., Lee, M.S., Yu, Y., Choi, Y.D., Park, B.S., van Deynze, A., Ashrafi, H., Hill, T., Kim, W.T., Pai, H.S., Ahn, H.K., Yeam, I., Giovannoni, J.J., Rose, J.K.C., Sorensen, I., Lee, S.J. Kim, R.W., Choi, I.Y., Choi, B.S., Lim, J.S., Lee, Y.H., Choi, D.: Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. — Natur. Genet. 46: 270–279, 2014.

    Article  CAS  Google Scholar 

  • Kim, J.S., Park, M., Lee, D., Kim, B.D.: Characterization of putative capsaicin synthase promoter activity. — Mol. Cells 28: 331–339, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Lancien, M., Lea P.: Amino acid synthesis in plastids. - In: Wise, R.R., Hoober J.K. (ed.): The Structure and Function of Plastids. Pp. 355–385. Springer, Dordrecht 2007.

    Chapter  Google Scholar 

  • Maeda, H., Shasany A.K., Schnepp, J., Orlova, I., Taguchi, G., Cooper, B.R., Rhodes, D., Pichersky, E, Dudareva, N.: RNAi suppression of arogenate dehydratase 1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. — Plant Cell 22: 832–849, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-López, L.A., Ochoa-Alejo, N., Martínez, O.: Dynamics of the chili pepper transcriptome during fruit development. — BMC Genomics 15: 143, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monforte-González, M., Guzmán-Antonio, A., Uuh-Chim, F., Vázquez-Flota, F.: Capsaicin accumulation is related to nitrate content in placentas of habanero peppers (Capsicum chinense Jacq.). — J. Sci. Food Agr. 90: 764–768, 2010.

    Google Scholar 

  • Núñez-Palenius, H.G., Ochoa-Alejo, N.: Effect of phenylalanine and phenylpropanoids on the accumulation of capsaicinoids and lignin in cell cultures of chili pepper (Capsicum annuum L.). — In Vitro cell. dev. Biol. 41: 801–805, 2005.

    Article  Google Scholar 

  • Ochoa-Alejo, N., Gómez-Peralta, J.E.: Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum L.). — J. Plant Physiol. 141: 147–152, 1993.

    Article  CAS  Google Scholar 

  • Ochoa-Alejo, N., Salgado-Garciglia, R.: Phenylalanine ammonia-lyase activity and capsaicin-precursor compounds in p-fluorophenylalanine-resistant and -sensitive variant cells of chili pepper (Capsicum annuum). — Physiol. Plant. 85: 173–179, 1992.

    Article  CAS  Google Scholar 

  • Peterson, G.L.: A simplification of the protein assay method of Lowry et al. which is more generally applicable. — Anal. Biochem. 83: 346–356, 1977.

    Article  CAS  PubMed  Google Scholar 

  • Rippert, P., Matringe, M.: Molecular and biochemical characterization of an Arabidopsis thaliana arogenate dehydrogenase with two highly similar and active protein domains. — Plant mol. Biol. 48: 361–368, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lau, N., Medina-Lara, F., Minero-García, Y., Torres-Tapia, L.W., Peraza-Sánchez, S.R., Martínez-Estévez, M.: Capsaicinoids are absent in habanero pepper vegetative organs (Capsicum chinense Jacq.). — HortScience 45: 323–326, 2010.

    Google Scholar 

  • Salgado-Garciglia, R., Ochoa-Alejo, N.: Incresed capsaicin content in PFP-resistant cells of chili pepper (Capsicum annum L.). — Plant Cell Rep. 8: 617–620, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Scheible, W.R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M.K., Stitt, M.: Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. — Plant Physiol. 136: 2483–2499, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, R., Shuford, C.M., Wang, J.P., Sun, Y.H., Yang, Z., Chen H.C., Tnlaya-Anukit, S., Li, Q., Liu, J., Muddiman, D.C., Sederoff, R.R., Chiang, V.L.: Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. — Planta 238: 487–497, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, C., Jr., Kang, B.C., Liu, K., Mazourek, M., Moore, S.L., Yoo, E.Y., Kim, B.D., Paran, I., Jahn, M.M.: The Pun1 gene for pungency in pepper encodes a putative acyltransferase. — Plant J. 42: 675–688, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Flota, F., Miranda-Ham, M.L., Monforte-González, M., Gutiérrez-Carbajal, G., Velázquez-García, C., Nieto-Pelayo, Y.: La biosíntesis de capsaicinoides, el principio picante del chile. — Rev. Fitotec. Mex. 30: 353–360, 2007. [In Span.]

    Google Scholar 

  • Zulak, K.G., Cornish, A., Daskalchuk, T.E., Deyholos, M.K., Goodenowe, D.B., Gordon, P.M.K., Klassen, D., Pelcher, L.E., Sensen, C.W., Facchini, P.J.: Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. — Planta 225: 1085–1106, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Miranda-Ham.

Additional information

Acknowledgement

The authors wish to acknowledge Q.F.B. Raúl Manzanilla for maintaining the plants and L.D.P. Norma Marmolejo for editing the graphic material. This work was funded by the CONACYT (México), Grant 168545. FMBE was the recipient of a CONACYT scholarship for Ph.D. studies. The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Concha, L.A., Baas-Espinola, F.M., Ancona-Escalante, W.R. et al. Phenylalanine biosynthesis and its relationship to accumulation of capsaicinoids during Capsicum chinense fruit development. Biol Plant 60, 579–584 (2016). https://doi.org/10.1007/s10535-016-0608-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0608-4

Additional key words

Navigation