Skip to main content
Log in

Effects of chilling and high temperatures on photosynthesis and chlorophyll fluorescence in leaves of watermelon seedlings

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The effects of chilling (CT, day/night temperatures of 12/10 °C, an irradiance of 250 μmol m−2 s−1), chilling combined with a low irradiance (CL, 12/10 °C, 80 μmol m−2 s−1), and a high temperature (HT, 42/40 °C, 250 μmol m−2 s−1) on chlorophyll content, chlorophyll fluorescence, and gas exchange were studied in two watermelon cultivars, ZJ8424 and YS01, differing in their resistance. The chlorophyll content, net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) decreased substantially, whereas the intercellular CO2 concentration (ci) increased when the two watermelon cultivars were grown under these stresses. The photosynthetic parameters showed greater changes at chilling than at the high temperature, and the CL caused a more pronounced inhibition in PN compared with the CT. After 2 d exposure to the CT, YS01 had higher PN, gs, and E, but a lower ci compared with ZJ8424. The maximum efficiency of photosystem (PS) II photochemistry (Fv/Fm), effective quantum yield of PS II photochemistry (ΦPSII), photochemical quenching (qP), and electron transport rate (ETR) decreased under the CT and CL but showed only a slight drop under the HT. All these stresses significantly increased non-photochemical quenching (NPQ). The CT brought more damage to the photosynthetic apparatus of leaves compared with the CL. In addition, after returning to normal conditions (25/15 °C, 250 μmol m−2 s−1) for 3 d, the photosynthetic parameters recovered to pre-stress levels in HT treated seedlings but not in CT treated seedlings. In conclusion, the low irradiance could help to alleviate the extent of photoinhibition of PS II photochemistry caused by chilling and cv. ZJ8424 was more sensitive to the extreme temperatures than cv. YS01.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ci :

intercellular CO2 concentration

CL:

chilling at low irradiance

CT:

chilling at normal irradiance

E:

transpiration rate

ETR:

electron transport rate

F0 :

minimal fluorescence

Fv/Fm :

maximum efficiency of PS II photochemistry

gs :

stomatal conductance

HT:

high temperature

NPQ:

non-photochemical quenching

PS:

photosystem

qP:

photochemical quenching

PN :

net photosynthetic rate

SE:

standard error

ΦPSII :

effective quantum yield of PS II photochemistry

References

  • Allen, D.J., Ort, D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants. — Trends Plant Sci. 6: 36–42, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev, S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A., Carpentier, R., Mohanty, P.: Heat stress: an overview of molecular responses in photosynthesis. — Photosynth. Res. 98: 541–550, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Aro, E.M., Virgin, I., Andersson, B.: Photoinhibition of photosystem II. Inactivation, protein damage and turnover. — Biochem. biophys. Acta 1143: 113–134, 1993.

    CAS  PubMed  Google Scholar 

  • Berry, J., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant Physiol. 31: 491–543, 1980.

    Article  Google Scholar 

  • Dat, J., Vandenabeele, S., Vranová, E., Montagu, M.V., Inzé, D., Breusegem, V.: Dual action of the active oxygen species during plant stress responses. — Cells Mol. Life Sci. 57: 779–795, 2000.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams III, W.W.: Photoprotection and other responses of plants to high light stress. — Annu. Rev. Plant Biol. 43: 599–626, 1992.

    Article  CAS  Google Scholar 

  • Djanaguiraman, M., Prasad, P.V.V., Boyle, D.L., Schapaugh, W.T.: High temperature stress and soybean leaves: leaf anatomy and photosynthesis. — Crop Sci. 51: 2125–2131, 2011.

    Article  Google Scholar 

  • Djanaguiraman, M., Prasad, P.V.V., Seppanen, M.: Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. — Plant Physiol Biochem. 48: 999–1007, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Du, Y.C., Nose, A., Wasano, K.: Effects of chilling temperature on photosynthetic rates, photosynthetic enzyme activities and metabolite levels in leaves of three sugarcane species. — Plant Cell Environ. 22: 317–324, 1999.

    Article  CAS  Google Scholar 

  • Filella, I., Serrano, L., Serra, J., Penuelas, J.: Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. — Crop Sci. 35: 1400–1405, 1995.

    Article  Google Scholar 

  • Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochem. biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Gitelson, A.A., Merzlyak, M.N.: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. — J Plant Physiol. 160: 271–282, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Greer, D.H., Berry, J.A., Björkman, O.: Photoinhibition of photosynthesis in intact bean leaves: role of light and temperature, and requirement for chloroplast-protein synthesis during recovery. — Planta 168: 253–260, 1986.

    CAS  PubMed  Google Scholar 

  • Groom, Q.J., Baker, N.R.: Analysis of light-induced depressions of photosynthesis in leaves of a wheat crop during the winter. — Plant Physiol. 100: 1217–1223, 1992.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hou, W., Sun, A.H., Yang, F.S., Zhan, Y.F., Li, S.Z., Zhou, Z.D.: Effects of low temperature stress on photosynthesis and chlorophyll fluorescence in watermelon seedlings. — Guang Dong Agr. Sci. 13: 35–39, 2014.

    Google Scholar 

  • Huner, N., Öquist, G., Sarhan, F.: Energy balance and acclimation to light and cold. — Trends Plant Sci. 3: 224–230, 1998.

    Article  Google Scholar 

  • Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics. — Annu. Rev. Plant Biol. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Kratsch, H.A., Wise, R.R.: The ultrastructure of chilling stress. — Plant Cell Environ. 23: 337–350, 2000.

    Article  CAS  Google Scholar 

  • Kudoh, H., Sonoike, K.: Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. — Planta 215: 541–548, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Martin, B., Ort, D.R., Boyer, J.S.: Impairment of photosynthesis by chilling-temperatures in tomato. — Plant Physiol. 68: 329–334, 1981.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matta, D.F.M., Maestri, M.: Photoinhibition and recovery of photosynthesis in Coffea arabica and C. canephora. — Photosynthetica 34: 439–446, 1998.

    Article  Google Scholar 

  • Murata, N., Takahashi, S., Nishiyama, Y., Allakhverdiev, S.I.: Photoinhibition of photosystem II under environmental stress. — Biochem. biophys. Acta 1767: 414–421, 2007.

    CAS  PubMed  Google Scholar 

  • Oquist, G., Hurry, V.M., Huner, N.P.A.: Low-temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye. — Plant Physiol. 101: 245–250, 1993.

    PubMed Central  PubMed  Google Scholar 

  • Pastenes, C., Horton, P.: Effect of high temperature on photosynthesis in beans. II. CO2 assimilation and metabolite contents. — Plant Physiol. 112: 1253–1260, 1996.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ploschuk, E.L., Bado, L.A., Salinas, M., Wassner, D.F., Windauer, L.B., Insausti, P.: Photosynthesis and fluorescence responses of Jatropha curcas to chilling and freezing stress during early vegetative stages. — Environ. exp. Bot. 102: 18–26, 2014.

    Article  CAS  Google Scholar 

  • Powles, S.B.: Photoinhibition of photosynthesis induced by visible light. — Annu. Rev. Plant Physiol. 35: 15–44, 1984.

    Article  CAS  Google Scholar 

  • Ruelland, E., Zachowski, A.: How plants sense temperature. — Environ. exp. Bot. 69: 225–232, 2010.

    Article  Google Scholar 

  • Sonoike, K.: Various aspects of inhibition of photosynthesis under light/chilling stress: “photoinhibition at chilling temperatures” versus “chilling damage in the light”. — J. Plant Res. 111: 121–129, 1998.

    Article  Google Scholar 

  • Sharkey, T.D.: Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. — Plant Cell Environ. 28: 269–277, 2005.

    Article  CAS  Google Scholar 

  • Taylor, A.O., Rowley, J.A.: Plants under climatic stress I. Low temperature, high light effects on photosynthesis. — Plant Physiol. 47: 713–718, 1971.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, L.J., Sun, Y.P., Zhang, Z.P., Kang, L.: Effects of 5- aminolevulinic acid (ALA) on photosynthesis and chlorophyll fluorescence of watermelon seedlings grown under low light and low temperature conditions. — Acta Hort. 856: 159–166, 2010.

    Article  CAS  Google Scholar 

  • Wise, R.R., Olson, A.J., Schrader S M., Sharkey, T.D.: Electron transport is the functional limitation of photosynthesis in fieldgrown pima cotton plants at high temperature. — Plant Cell Environ. 27: 717–724, 2004.

    Article  CAS  Google Scholar 

  • Yamori, W., Noguchi, K., Kashino, Y., Terashima, I.: The role of electron transport in determining the temperature dependence of the photosynthetic rate in spinach leaves grown at contrasting temperatures. — Plant Cell Physiol. 49: 583–591, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Yan, N., Xu, X.F., Wang, Z.D., Huang, J.Z., Guo, D.P.: Interactive effects of temperature and light intensity on photosynthesis and antioxidant enzyme activity in Zizania latifolia Turcz. plants. — Photosynthetica 51: 127–138, 2013.

    Article  CAS  Google Scholar 

  • Zinn, K.E., Tunc-Ozdemir, M., Harper, J.F.: Temperature stress and plant sexual reproduction: uncovering the weakest links. — J. exp. Bot. 61: 1959–1968, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Yang.

Additional information

Acknowledgements: This work was supported by the Agriculture Research in the Public Interest of China under Grant numbers (GYHY20120619) and by the excellent thesis project in Hainan University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, W., Sun, A.H., Chen, H.L. et al. Effects of chilling and high temperatures on photosynthesis and chlorophyll fluorescence in leaves of watermelon seedlings. Biol Plant 60, 148–154 (2016). https://doi.org/10.1007/s10535-015-0575-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0575-1

Additional key words

Navigation