Skip to main content
Log in

In silico characterization and expression analysis of selected Arabidopsis receptor-like kinase genes responsive to different MAMP inducers

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Candidate Arabidopsis thaliana S-domain receptor-like kinase (SD-RLK) (At1g11330, At1g61430, and At1g61610) and leucine-rich repeat receptor-like kinase (LRR-RLK) (At1g51850, At2g19190, and At5g45840) genes were characterized utilizing PlantPAN, AGRIS, and AthaMap databases. Following determination of the main conserved domains, both classes of RLKs were found to be structurally similar with extracellular, transmembrane, and intracellular domains including a serine/threonine kinase domain, which might suggest a functional role in intracellular signal transduction. This established that the RLK genes had a superficially similar structure but distinct ligand binding domains. The expressions of these genes in response to a treatment with microbe-associated molecular pattern molecules (MAMPs), namely lipopolysaccharides, flg22 peptide from flagellin, peptidoglycan, chitosan, and ergosterol were compared. The candidate RLKs, potentially involved in surveillance, were found to be responsive to the elicitation treatments. Furthermore, differential regulation that was observed at the transcriptional level as well as the intensity of responses could possibly be correlated to the promoter architecture. With the use of in silico analyses, the architectures of 1 000 bp promoter regions upstream from the transcription start sites were determined. The analyses also revealed putative defense-related cis-regulatory elements that included W-boxes, MYB factor, AP2/ERF-, GT1- and ATHB-5 binding sites. The frequency at which these cis-elements occurred in each promoter differed, and the number or clusters within the core-regulatory region of individual promoters might be indicative of the responsiveness of each gene to the MAMP elicitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHIT:

chitosan

CRE:

cis-regulatory element

ERG:

ergosterol

Flg22:

flagellin-derived peptide

LPS:

lipopolysaccharide

MAMP:

microbe associated molecular pattern

MTI:

MAMP-triggered immunity

PGN:

peptidoglycan

RLK:

receptor-like kinase

TF:

transcription factor

References

  • Antolín-Llovera, M., Ried, M.K., Binder, A., Parniske, M.: Receptor kinase signaling pathways in plant-microbe interactions. — Annu. Rev. Phytopathol. 50: 451–473, 2012.

    Article  PubMed  Google Scholar 

  • Afzal, A.J., Wood, A.J., Lightfoot, D.A.: Plant receptor-like serine threonine kinases: roles in signalling and plant defense. — Mol. Plant Microbe Interact. 21: 507–517, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Aslam, S.N., Erbs, G., Morrissey, K.L., Newman, M.-A., Chinchilla, D., Boller, T., Molinaro, A., Jackson, R.W., Cooper, R.M.: Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses. — Mol. Plant Pathol. 10: 375–387, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Beets, C., Huang, J-C., Madala, N.E., Dubery, I.A.: Biosynthesis of camalexin in Arabidopsis thaliana in response to lipopolysaccharide elicitation: a gene-to-metabolite study. — Planta 236: 261–272, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Bülow, L., Steffens, N.O., Galuschka, C., Schindler, M., Hehl, R.: AthaMap: from in silico data to real transcription factor binding sites. — In Silico Biol. 6: 23, 2006.

    Google Scholar 

  • Chang, W.C., Lee, T.Y., Huang, H.D., Huang, H.Y., Pan, R.L.: PlantPAN: plant promoter analysis navigator for identifying combinatorial cis-regulatory elements with distance constraint in plant gene group. — BMC Genom. 9: 561, 2008.

    Article  Google Scholar 

  • Chen, W., Provart, N.J., Glazebrook, J., Katagiri, F., Chang, HS., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S.A., Budworth, P.R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps, J.A., Harper, J.F., Si-Ammour, A., Mauch-Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J.L., Wang, X., Zhu, T.: Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. — Plant Cell 14: 559–574, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho, S.M., Kang, E.Y., Min, K.H., Lee, A.K., Kim, Y.C., Yang, K.Y., Kim, K.S., Choi, Y.S., Cho, B.H.: A positive regulatory role of the watermelon ClWRKY70 gene for disease resistance in transgenic Arabidopsis thaliana. — Biol. Plant. 56: 560–565, 2012.

    Article  CAS  Google Scholar 

  • Coventry, H.S., Dubery, I.A.: Lipopolysaccharides from Burkholderia cepacia contribute to an enhanced defense capacity and the induction of pathogenesis-related proteins in Nicotiana tabacum. — Physiol. mol. Plant Pathol. 58: 149–158, 2001.

    Article  CAS  Google Scholar 

  • Davuluri, R.V., Sun, H., Palaniswamy, S.K., Matthews, N., Molina, C., Kurtz, M., Grotewold, E.: AGRIS: Arabidopsis Gene Regulatory Information Server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. — BMC Bioinform. 4: 25, 2003.

    Article  Google Scholar 

  • Dean, J.D., Goodwin, P.H., Hsiang, T.: Comparison of relative RT-PCR and northern blot analyses to measure expression of β-1,3-glucanase in Nicotiana benthamiana infected with Colletotrichum destructivu. — Plant mol. Biol. Rep. 20: 347–356, 2002.

    Article  CAS  Google Scholar 

  • Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., Lepiniec, L.: MYB transcription factors in Arabidopsis. — Trends Plant Sci. 15: 573–581, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Erbs, G., Newman, M.-A.: The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbeassociated molecular patterns (MAMPs), in plant innate immunity. — Mol. Plant Pathol. 13: 95–104, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein, R.R., Lynch, T.J.: The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. — Plant Cell 12: 599–610, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fusco, N., Micheletto, L., Dal Corso, G., Borgato, L., Furini, A.: Identification of cadmium-regulated genes by cDNAAFLP in the heavy metal accumulator Brassica juncea L. — J. exp. Bot. 56: 3017–3027, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Gerber, I.B., Zeidler, D., Durner, J., Dubery, I.A.: Early perception responses of Nicotiana tabacum cells in response to lipopolysaccharides from Burkholderia cepacia. — Planta 218: 647–657, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Gerber, I.B., Dubery, I.A.: Protein phosphorylation in Nicotiana tabacum cells in response to perception of lipopolysaccharides from Burkholderia cepacia. — Phytochemistry 65: 2957–2966, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Gurr, S.J., Rushton, P.J.: Engineering plants with increased disease resistance: how are we going to express it? — Trends Biotechnol. 23: 283–290, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Gururani, M.A., Venkatesh, J., Upadhyaya, C.P., Nookaraju, A., Pandey, S.K., Park, S.W.: Plant disease resistance genes: current status and future directions. — Physiol. mol. Plant Pathol. 78: 51–65, 2012.

    Article  CAS  Google Scholar 

  • Gust, A.A., Biswas, R., Lenz, H.D., Rauhut, T., Ranf, S., Kemmerling, B., Götz, F., Glawischnig, E., Lee, J., Felix, G., Nürnberger, T.: Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. — J. biol. Chem. 262: 32338–32348, 2007.

    Article  Google Scholar 

  • Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T.: Plant cis-acting regulatory DNA elements (PLACE) database. — Nucl. Acids Res. 27: 297–300, 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu, X.J., Zhang, Z.B., Xu, P., Fu, Z.F., Hu, S.B., Song, W.Y.: Multifunctional genes: the cross-talk among the regulation networks of abiotic stress responses. — Biol. Plant. 54: 213–223, 2010.

    Article  CAS  Google Scholar 

  • Huang, J.-C., Piater, L.A., Dubery, I.A.: Identification and characterization of a differentially expressed NAC transcription factor gene in MAMP-treated Arabidopsis thaliana. — Physiol. mol. Plant Pathol. 80: 19–27, 2012.

    Article  CAS  Google Scholar 

  • Jalali, B.L., Bhargava, S., Kamble, A.: Signal transduction and transcriptional regulation of plant defence responses. — J. Phytopathol. 154: 65–74, 2006.

    Article  CAS  Google Scholar 

  • Johannesson, H., Wang, Y., Hanson, J., Engström, P.: The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. — Plant mol. Biol. 51: 719–729, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Kagaya, Y., Ohmiya, K., Hattori, T.: RAV1, a novel DNAbinding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. — Nucl. Acids Res 27: 470–478, 1998.

    Article  Google Scholar 

  • Kemmerling, B., Halter, T., Mazzotta, S., Mosher, S., Nürnberger, T.: A genome-wide survey for Arabidopsis leucine-rich repeat receptor kinases implicated in plant immunity. — Front. Plant Sci. 2: 88, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kesarwani, M., Yoo, J., Dong, X.: Genetic interactions of TGA transcription factors in the regulation of pathogenesisrelated genes and disease resistance in Arabidopsis. — Plant Physiol. 144: 336–346, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laquitaine, L., Gomès, E., François, J., Marchive, C., Pascal, S., Hamdi, S., Atanassova, R., Delrot, S., Coutos-Thévenot, P.: Molecular basis of ergosterol-induced protection of grape against Botrytis cinerea: induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression. — Mol. Plant Microbe Interact. 19: 1103–1112, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Lenka, S.K., Lohia, B., Kumar, A., Chinnusamy, V., Bansal, K.C.: Genome-wide targeted prediction of ABA responsive genes in rice based on over-presented cis-motif in coexpressed genes. — Plant mol. Biol. 69: 261–271, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Livaja, M., Zeidler, D., Von Rad, U., Durner, J.: Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide. — Immunobiology 213: 161–171, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Louw, A.E., Dubery, I.A.: Plant defence responses in isonicotinamide-treated tobacco cells. Evidence supporting a role for nicotinamide related metabolites as stress mediators in plant defense metabolism. — J. Plant Physiol. 156: 26–32, 2000.

    Article  CAS  Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., Dietrich, R.A.: The transcriptome of Arabidopsis thaliana during systemic acquired resistance. — Nat. Genet. 26: 403–410, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Manavella, P.A., Dezar, C.A., Bonaventure, G., Baldwin, I.T., Chan, R.L.: HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses. — Plant J. 56: 376–388, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K.: AP2/ERF family transcription factors in plant abiotic stress responses. — Biochim. biophys. Acta 1819: 86–96, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–479, 1962.

    Article  CAS  Google Scholar 

  • Nasrallah, J.B.: Evolution of the Brassica self-incompatibility locus: A look into S-locus gene polymorphisms. — Proc. nat. Acad. Sci. USA 94: 9516–9519, 1997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T., Jones, J.D.G.: The transcriptional innate immune response to flg22. Interplay and overlap with Avr genedependent defense responses and bacterial pathogenesis. — Plant Physiol. 135: 1113–1128, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newman, M., Dow, J.M., Molinaro, A., Parrilli, M.: Priming, induction and modulation of plant defense responses by bacterial lipopolysaccharides. — J. Endotoxin Res. 13: 69–84, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, S.P., Somssich, I.E.: The Role of WRKY transcription factors in plant immunity. — Plant Physiol. 150: 1648–1655, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park, H.C., Kim, M.L., Yun, H.K., Jeon, J.M., Moon, B.C., Lee, J.H., Yoon, H.W., Lee, S.H., Chung, W.S., Lim, C.O., Lee, S.Y., Hong, J.C., Cho, M.J.: Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. — Plant Physiol. 135: 2150–2161, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piater, L.A., Nürnberger, T., Dubery, I.A.: Identification of a lipopolysaccharide responsive erk-like MAP kinase in tobacco leaf tissue. — Mol. Plant Pathol. 5: 331–341, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Priest, H.D., Filichkin, S.A., Mockler, T.C.: cis-Regulatory elements in plant cell signalling. — Curr. Opin. Plant Biol. 12: 643–649, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Prouse, M.B., Campbell, M.M.: The interaction between MYB proteins and their target DNA binding sites. — Biochim. biophys. Acta 1819: 67–77, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Qu, L.-J., Zhu, Y.-X.: Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. — Curr. Opin. Plant Biol. 9: 544–549, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Redman, J., Whitcraft, J., Johnson, C., Arias, J.: Abiotic and biotic stress differentially stimulate as-1 element activity in Arabidopsis. — Plant Cell Rep. 21: 180–185, 2002.

    Article  CAS  Google Scholar 

  • Riechmann, J.L.: Transcriptional regulation: a genomic overview. — In: Somerville, C.R., Meyerowitz, E.M. (ed.): The Arabidopsis Book. Pp. 1–46. American Society of Plant Biologists, Rockville 2002.

    Google Scholar 

  • Rushton, P.J., Reinstädler, A., Lipka, V., Lippok, B., Somssich, I.E.: Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signalling. — Plant Cell 14: 749–762, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rushton, P.J., Somssich, I.E.: Transcriptional control of plant genes responsive to pathogens. — Curr. Opin. Plant Biol. 1: 311–315, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., Russell, D.W.: Extraction, purification and analysis of mRNA from eukaryotic cells. — In: Sambrook, J., Russell, D.W. (ed.): Molecular Cloning. Vol. 1. Pp. 7.4–7.8. Cold Spring Harbour Laboratory Press, New York 2000.

    Google Scholar 

  • Sanabria, N.M., Dubery, I.A.: Differential display profiling of the Nicotiana response to LPS reveals elements of plant basal resistance. — Biochem. biophys. Res. Commun. 344: 1001–1007, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Sanabria, N.M., Goring, D., Nürnberger, T., Dubery, I.A.: Self/nonself perception and recognition mechanisms in plants: a comparison of self-incompatibility and innate immunity. — New Phytol. 178: 503–514, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Sanabria, N.M., Huang, J.-C., Dubery, I.A.: Self/non-self perception in plants in innate immunity and defense. — Self/Non-Self Immun. Recog. Signal. 1: 40–45, 2010.

    Google Scholar 

  • Sanabria, N.M., Van Heerden, H., Dubery, I.A.: Molecular characterization and regulation of a Nicotiana tabacum S-domain receptor-like kinase gene induced during an early rapid response to lipopolysaccharides. — Gene 501: 39–48, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Shameer, K., Ambika, S., Varghese, S.M., Karaba, N., Udayakumar, M., Sowdhamini, R.: STIFDB-Arabidopsis stress responsive transcription factor database. — Int. J. Plant Genom. 2009: 583429, 2009.

    CAS  Google Scholar 

  • Shiu, S-H., Bleecker, A.B.: Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis. — Plant Physiol. 132: 530–543, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Shiu, S-H., Karlowski, W.M., Pan, R., Tzeng, Y-H., Mayer, K.F.X.: Comparative analysis of receptor-like kinase family in Arabidopsis and rice. — Plant Cell 16: 1220–1234, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh, K.B., Foley, R.C., Oñate-Sánchez, L.: Transcriptional factors in plant defense and stress responses. — Curr. Opin. Plant Biol. 5: 430–436, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Stracke, R., Werber, M., Weisshaar, B.: The R2R3-MYB gene family in Arabidopsis thaliana. — Curr. Opin. Plant Biol. 4: 447–456, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Vidhyasekaran, P. (ed.): PAMP Signals in Plant Innate Immunity. — Springer, Dordrecht 2014.

    Google Scholar 

  • Vandepoele, K., Casneuf, T., Van de Peer, Y.: Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics. — Genome Biol. 7: R103.1–R103.14, 2006.

    Article  Google Scholar 

  • Van Veck, M.C., Bol, J.F., Lindhorst, J.M.: Prospecting for genes involved in transcriptional regulation of plant defenses, a bioinformatics approach. — BMC Plant Biol. 11: 88, 2011.

    Article  Google Scholar 

  • Wu, Y., Zhou, J.-M.: Receptor-like kinases in plant innate immunity. — J. Integr. Plant. Biol. 55: 1271–1286, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Xing, S., Li, M., Liu, P.: Evolution of S-domain receptor-like kinases in land plants and origination of S-locus receptor kinases in Brassicaceae. — BMC Evol. Biol. 13: 69, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, T., Poovaiah, B.W.: CGCG box is recognized by AtSR1-6 (CAMTA3) Ca2+ and calmodulin binds to AtSRs. — J. biol. Chem. 47: 45049–45058, 2002.

    Article  Google Scholar 

  • Zhou, D.X.: Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. — Trends Plant Sci. 4: 210–214, 1999.

    Article  PubMed  Google Scholar 

  • Zipfel, C., Robatzek, S.: Pathogen-associated molecular patterntriggered immunity: Veni, Vidi…? — Plant Physiol. 154: 551–554, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Dubery.

Additional information

Acknowledgements: This study was supported by the South African National Research Foundation and the University of Johannesburg, South Africa. We thank Robert Gerrard for technical assistance.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

New, S.A., Piater, L.A. & Dubery, I.A. In silico characterization and expression analysis of selected Arabidopsis receptor-like kinase genes responsive to different MAMP inducers. Biol Plant 59, 18–28 (2015). https://doi.org/10.1007/s10535-014-0478-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0478-6

Additional key words

Navigation