Skip to main content
Log in

Molecular cloning and expression analyses of FaFT, FaTFL, and FaAP1 genes in cultivated strawberry: their correlation to flower bud formation

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

In this study, we cloned flowering-related genes FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) from domesticated octaploid strawberries (Fragaria × ananassa) and analyzed their expression patterns in cultivars Tochiotome and Akihime. The floral meristem generation was induced under the short day and low temperature (SDLT), but not under the long day and high temperature (LDHT). We found that FaFT1, which is an orthologue of the Arabidopsis floral activator FT, was highly expressed in leaves under LDHT but not expressed in leaves under SDLT. On the other hand, the expression of FaTFL2, which belongs to the TFL1 family of flowering repressing genes, decreased in crowns (stem tissue including meristem) under SDLT. These results suggest that FaTFL2, as opposed to FvTFL1 in wild diploid strawberry Fragaria vesca, is related to flowering of the cultivated strawberry. Moreover, the FaTFL2 expression might be regulated by temperature rather than by photoperiod. We demonstrated that a reduction of the FaTFL2 expression is a key signal for flowering in domesticated strawberries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP1:

APETALA1

CO:

CONSTANCS

DTT:

dithiothreitol

EGTA:

ethyleneglycoltetraacetic acid

FD:

FLOWERING LOCUS D

FT:

FLOWERING LOCUS T

LDHT:

long day and high temperature

LDLT:

long day and low temperature

MSI1:

multicopy suppressor of IRA1

PEBP:

phosphatidylethanolamine-binding protein

PVP:

polyvinylpyrrolidone

RT- qPCR:

real time quantitative polymerase chain reaction

SDHT:

short day and high temperature

SDLT:

short day and low temperature

SDS:

sodium dodecyl sulfate

TFL1:

TERMINAL FLOWER1

References

  • Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., Araki, T.: FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. — Science 309: 1052–1056, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Abramoff, M.D., Magelhaes, P.J., Ram, S.J.: Image processing with ImageJ. — Biophotonics Int. 11: 36–42, 2004.

    Google Scholar 

  • Ahn, J.H., Miller, D., Winter, V.J., Banfield, M.J., Lee, J.H., Yoo, S.Y., Henz, S.R., Brady, R.L., Weigel, D.: A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. — EMBO J. 25: 605–614, 2006.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • An, H., Roussot, C., Suárez-López, P., Corbesier, L., Vincent, C., Piñeiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C., Coupland, G.: CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. — Development 131: 3615–3626, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, E., Hancock, J.F., Warner, R.M.: Interactions of temperature and photoperiod determine expression of repeat flowering in strawberry. — J. amer. Soc. hort. Sci. 135: 102–107, 2010

    Google Scholar 

  • Conti, L., Bradley, D.: TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. — Plant Cell 19: 767–778, 2007.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., Coupland, G.: FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. — Science 316: 1030–1033, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hanano, S., Goto, K.: Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. — Plant Cell 23: 3172–3184, 2011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hanzawa, Y., Money, T., Bradley, D.: A single amino acid converts a repressor to an activator of flowering. — Proc. nat. Acad. Sci. USA 102: 7748–7753, 2005.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hayama, R., Yokoi, S., Tamaki, S., Yano, M., Shimamoto, K.: Adaptation of photoperiodic control pathways produces short-day flowering in rice. — Nature 422: 719–722, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hayama, R., Agashe, B., Luley, E., King, R., Coupland, G.: A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. — Plant Cell 19: 2988–3000, 2007.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iwata, H., Gaston, A., Remay, A., Thouroude, T., Jeauffre, J., Kawamura, K., Oyant, L.H., Araki, T., Denoyes, B., Foucher, F.: The TFL1 homologue KSN is a regulator of continuous floering in rose and strawberry. — Plant J. 69: 116–125, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, K.E., Wigge, P.A.: FT protein acts as a long-range signal in Arabidopsis. — Curr. Biol. 17: 1050–1054, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Kong, F., Liu, B., Xia, Z., Sato, S., Kim, B.M., Watanabe, S., Yamada, T., Tabata, S., Kanazawa, A., Harada, K., Abe, J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. — Plant Physiol. 154: 1220–1231, 2010.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koskela, E.A., Mouhu, K., Albani, M.C., Kurokura, T., Rantanen, M., Sargent, D.J., Battey, N.H., Coupland, G., Elomaa, P., Hytönen, T.: Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca. — Plant Physiol. 159: 1043–1054, 2012.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mimida, N., Li, J., Zhang, C., Moriya, S., Moriya-Tanaka, Y., Iwanami, H., Honda, C., Oshino, H., Takagishi, K., Suzuki, A., Komori, S., Wada, M.: Divergence of TERMINAL FLOWER1-like genes in Rosaceae. — Biol. Plant. 56: 465–472, 2012.

    Article  CAS  Google Scholar 

  • Mouhu, K., Hytönen, T., Folta, K., Rantanen, M., Paulin, L., Auvinen, P., Elomaa, P.: Identification of flowering genes in strawberry, a perennial SD plant. — BMC Plant Biol. 9: 122, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratcliffe, O.J., Bradley, D.J., Coen, E.S.: Separation of shoot and floral identity in Arabidopsis. — Development 126: 1109–1120, 1999.

    PubMed  CAS  Google Scholar 

  • Shulaev, V., Sargent, D.J., Crowhurst, R.N., Mockler, T.C., Folkerts, O., Delcher, A.L., Jaiswal, P., Mockaitis, K., Liston, A., Mane, S.P., Burns, P., Davis, T.M., Slovin, J.P., Bassil, N., Hellens, R.P., Evans, C., Harkins, T., Kodira, C., Desany, B., Crasta, O.R., Jensen, R.V., Allan, A.C., Michael, T.P., Setubal, J.C., Celton, J.-M., Rees, D.J.G., Williams, K.P., Holt, S.H., Rojas, J.J.R., Chatterjee, M., Liu, B., Silva, H., Meisel, L., Adato, A., Filichkin, S.A., Troggio, M., Viola, R., Ashman, T.-L., Wang, H., Dharmawardhana, P., Elser, J., Raja, R., Priest, H.D., Bryant, D.W., Jr., Fox, S.E., Givan, S.A., Wilhelm, L.J., Naithani, S., Christoffels, A., Salama, D.Y., Carter, J., Girona, E.L., Zdepski, A., Wang, W., Kerstetter, R.A., Schwab, W., Korban, S.S., Davik, J., Monfort, A., Denoyes-Rothan, B., Arus, P., Mittler, R., Flinn, B., Aharoni, A., Bennetzen, J.L., Salzberg, S.L., Dickerman, A.W., Velasco, R., Borodovsky, M., Veilleux, R.E., Folta, K.M.: The genome of woodland strawberry (Fragaria vesca). — Nat. Genet. 43: 109–116, 2011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sønsteby, A., Nes, A.: Short days and temperature effects on growth and flowering in strawberry (Fragaria × ananassa Duch.). — J. hort. Sci. Biotechnol. 73: 730–736, 1998.

    Google Scholar 

  • Sønsteby, A., Heide, O.M.: Long-day control of flowering in everbearing strawberries. — J. hort. Sci. Biotechnol. 82: 875–884, 2007.

    Google Scholar 

  • Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., Shimamoto, K.: Hd3a protein is a mobile flowering signal in rice. — Science 316: 1033–1036, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Taoka, K., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y.A., Tamaki, S., Ogaki, Y., Shimada, C., Nakagawa, A., Kojima, C., Shimamoto, K.: 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. — Nature 476: 332–335, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D.R.: The physiology of flowering in strawberry. — Acta Hort. 567: 245–251, 2002.

    Google Scholar 

  • Turck, F., Fornara, F., Coupland, G.: Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. — Annu. Rev. Plant Biol. 59: 573–594, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Turnbull, C.: Long-distance regulation of flowering time. — J. exp. Bot. 62: 4399–4413, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., Coupland, G.: Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. — Science 303: 1003–1006, 2004

    Article  PubMed  CAS  Google Scholar 

  • Verheul, M.J., Sonsteby, A., Grimstad, S.O.: Interaction of photoperiod, temperature, duration of short-day treatment and plant age on flowering of Fragaria × ananassa Duch. cv. Korona. — Sci. Hort. 107: 164–170, 2006.

    Article  Google Scholar 

  • Wan, C.-Y., Wilkins, T.A.: A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). — Anal. Biochem. 223: 7–12, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Weebadde, C.K., Wang, D., Finn, C.E., Lewers, K.S., Luby, J.J., Bushakra, J., Sjulin, T.M., Hancock, J.F.: Using a linkage mapping approach to identify QTL for day-neutrality in the octaploid strawberry. — Plant Breed. 127: 94–101, 2008.

    Google Scholar 

  • Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., Weigel, D.: Integration of spatial and temporal information during floral induction in Arabidopsis. — Science 309: 1056–1059, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wigge, P.A.: FT, a mobile developmental signal in plants. — Curr. Biol. 21: R374–R378, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, K., Seitz, T., Li, S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Katsanakis, K.D., Rose, D.W., Mischak, H., Sedivy, J.M., Kolch, W.: Suppression of Raf-1 kinase activity and MAP kinase signaling by RKIP. — Nature 401: 173–177, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Matsumoto.

Additional information

Acknowledgements: We are indebted to Mrs. S. Niwa and K. Kato for their valuable technical assistance. This research was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Nos. 17580024 and 23658026).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, R., Otagaki, S., Yamada, K. et al. Molecular cloning and expression analyses of FaFT, FaTFL, and FaAP1 genes in cultivated strawberry: their correlation to flower bud formation. Biol Plant 58, 641–648 (2014). https://doi.org/10.1007/s10535-014-0452-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0452-3

Additional key words

Navigation