Skip to main content
Log in

Effects of elevated CO2 applied to potato roots on the anatomy and ultrastructure of leaves

  • Published:
Biologia Plantarum

Abstract

The root system of potato (Solanum tuberosum L. cv. Favorita) plants was treated with different O2 and CO2 concentrations for 35 d in aeroponic culture. Under 21 or 5 % O2 in the root zones, the thickness of leaves and palisade parenchyma significantly increased at 3 600 μmol(CO2) mol−1 in the root zone, compared with CO2 concentration 380 μmol mol−1 or low CO2 concentration (100 μmol mol−1). In addition, smaller cells of palisade tissue, more intercellular air spaces and partially two layers of palisade cells were observed in the leaves with root-zone CO2 enrichment. Furthermore, there was a significant increase in the size of chloroplasts and starch grains, and the number of starch grains per chloroplast due to elevated CO2 only under 21 % O2. In addition, a significant decline in the thickness of grana and the number of lamellas, but no significant differences in the number of grana per chloroplast were observed under elevated CO2 concentration. The accumulation of starch grains in the chloroplast under elevated CO2 concentration could change the arrangement of grana thylakoids and consequently inhibited the absorption of sun radiation and photosynthesis of potato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACES:

the aeroponic culture experiment system

TEM:

transmission electron microscopy

References

  • Arteca, R.N., Poovaiah, B.W., Smith, O.E: Changes in carbon fixation, tuberization and growth induced by CO2 application to the root zone of potato plants. — Science 205: 1279–1280, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Arteca, R.N., Poovaiah, B.W.: Absorption of 14CO2 by potato roots and its subsequent translocation. — J. amer. Soc. hort. Sci. 107: 398–401, 1982.

    CAS  Google Scholar 

  • Ball, A.S., Drake, B.G.: Stimulation of soil respiration by carbon dioxide enrichment of marsh vegetation. — Soil Biol. Biochem. 30: 1203–1205, 1998.

    Article  CAS  Google Scholar 

  • Bunchanan, B.B., Gruissem, W., Jones, R.L.: Biochemistry and Moleculer Biology of Plants. — Courier Companies, Rockville 2000.

  • Coker, G.T., Shubert, K.R.: Carbon dioxide fixation in soybean root and nodules. I. Characterization and comparison with N2 fixation and composition of xylem exudates during early nodule development. — Plant Physiol. 67: 691–696, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, M.D., Richards, M.D.: The effect of rhizosphere dissolved inorganic carbon on gas exchange characteristics and growth rates of tomato seedlings. — J. exp. Bot. 50: 79–87, 1999.

    Article  CAS  Google Scholar 

  • Diao, Y.W., Zheng, X.H., Wang, Y.S., Xu, Z.J., Han, S.H., Zhu, J.G.: [Measurement of CO2 profiles in non-waterlogged soil in a FACE study.] — Chin. J. appl. Ecol. 13: 1249–1252, 2002.[In Chin.]

    CAS  Google Scholar 

  • Edwards, N.T., Norby, R.J.: Below-ground respiratory responses of sugar maple and red maple saplings to atmospheric CO2 enrichment and elevated air temperature. —Plant Soil 206: 85–97, 1999.

    Article  Google Scholar 

  • Finnan, J.M., Donnelly, A., Jones, M.B., Burke, J.I.: The effect of elevated levels of carbon dioxide on potato crops, — J. Crop Improvement 13: 91–111, 2005.

    Article  CAS  Google Scholar 

  • Gonzalez-Meler, M.A., Taneva, L., Trueman, R.J.: Plant respiration and elevated atmospheric CO2 concentration: cellular responses and global significance. — Ann. Bot. 94: 647–656, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Graf, G.E., Aronoff, S.: Carbon dioxide fixation in roots. —Science 121: 211–212, 1955.

    Article  PubMed  CAS  Google Scholar 

  • Gunning, B.E., Steer, M.W.: Plant Cell Biology, an Ultrastructural Approach. — Edward Arnold, London 1975.

  • Hibberd, J.M., Quick, W.P.: Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. — Nature 415: 451–454, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ineson, P., Coward, P.A., Hartwig, U.A.: Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: the Swiss free air carbon dioxide enrichment experiment. —Plant Soil 198: 89–95, 1998.

    Article  CAS  Google Scholar 

  • Janssens, I.A., Ceulemans, R.: The response of soil CO2-efflux under trees grown in elevated atmospheric CO2: a literature review. — Phyton 40: 97–101, 2000.

    Google Scholar 

  • Janssens, I.A., Crookshanks, M., Taylor, G., Ceulemans, R.: Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings. — Global Change Biol. 4: 871–878, 1998.

    Article  Google Scholar 

  • Johnson, D., Geisinger, D., Walker, R., Newman, J, Vose, J, Elliot, K., Ball, T.: Soil pCO2, soil respiration, and root activity in CO2-fumigated and nitrogen fertilized ponderosa pine. — Plant Soil 165: 129–138, 1994.

    Article  CAS  Google Scholar 

  • Kimball, B.A., LaMorte, R.L., Pinter, P.J., Wall, G.W., Hunsaker, D.J., Adamsen, F.J., Leavitt, S.W., Thompson, T.L., Matthias, A.D., Brooks, T.J.: Free-air CO2 enrichment and soil nitrogen effects on energy balance and evapotranspiration of wheat. — Water Resources Res. 35: 1179–1190, 1999.

    Article  CAS  Google Scholar 

  • Kimball, B.A., Zhu, J.G., Cheng, L., Kobayashi, K., Bindi, M.: [Responses of agricultural crops to free-air CO2 enrichment.] — Chin. J. appl. Ecol. 13: 1323–1338, 2002. [In Chin.]

    CAS  Google Scholar 

  • King, J.S., Hanson, P.J., Bernhardt, E., DeAngelis, P., Norby, R.J., Pregitzer, K.S.: A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. — Global Change Biol. 10: 1027–1042, 2004

    Article  Google Scholar 

  • Körner, C., Arnone, J.A.: Responses to elevated carbon dioxide in artificial tropical ecosystems. — Science 257: 1672–1675, 1992.

    Article  PubMed  Google Scholar 

  • Lin, J.X., Hu, Y.X.: [Structural response of soybean leaf to elevated CO2 concentration.] — Acta bot. sin. 38: 31–34, 1996. [In Chin.]

    CAS  Google Scholar 

  • Li, X.M., He, X.Y., Zhang, L.H., Chen, W., Chen, Q.: Influence of elevated CO2 and O3 on IAA, IAA oxidase and peroxidase in the leaves of ginkgo trees. — Biol. Plant. 53: 339–342, 2009

    Article  CAS  Google Scholar 

  • Luo, Y., Jackson, R.B., Field, C.B., Mooney, H.A.: Elevated CO2 increases belowground respiration in California grasslands. — Oecologia 108: 130–137, 1996.

    Article  Google Scholar 

  • Madsen, E.: Effect of CO2 environment on growth, development, fruit production and fruit quality of tomato from a physiological viewpoint. — In: Chouard, P., De Bilderling, N. (ed.): Phytotronics in Agricultural and Horticultural Research. Pp. 318–330. Bordas, Paris 1975.

  • McGuire, M.A., Marshall, J.D., Teskey, R.O.: Assimilation of xylem-transported 13C-labelled CO2 in leaves and branches of sycamore (Platanus occidentalis L.). — J. exp. Bot. 60: 3809–3817, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Miglietta, F., Magliulo, V., Bindi, M., Cerio, L., Vaccari, F.P., Loduca, V., Peressottis, A.: Free air CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. — Global Change Biol. 4: 163–172, 1998.

    Article  Google Scholar 

  • Overstreet, R., Ruben, S., Broyer, T.C.: The absorption of bicarbonate ions by barley plants as indicated by studies with radioactive carbon. — Proc. nat. Acad. Sci. USA 26: 688–695, 1940.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, P.N., Palmer, M.R.: Atmospheric carbon dioxide concentrations over the past 60 million years. — Nature 406: 695–699, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Perter, P.H., Johnson, G.B.: Biology. 6th Ed. — McGraw-Hill Companies, New York 2002.

    Google Scholar 

  • Radoglou, K.M., Jarvis, P.G.: The effects of CO2 enrichment and nutrient supply on growth, morphology and anatomy of Phaseolus vulgaris L. seedlings. — Ann. Bot. 70: 245–256, 1992.

    CAS  Google Scholar 

  • Vose, J.M., Elliot, K.J., Johnson, D.W., Tingey, D.T., Johnson, M.G.: Soil respiration response to three years of elevated CO2 and N fertilization in ponderosa pine (Pinus ponderosa Doug ex. Laws.). — Plant Soil 190: 19–28, 1997.

    Article  CAS  Google Scholar 

  • Vu, J.C.V., Allen, L.H., Jr., Bowes, G.: Leaf ultrastructrue, carbohydrates and protein of soybeans grown under CO2 enrichment. — Environ. exp. Bot. 29: 141–147, 1989.

    Article  CAS  Google Scholar 

  • Wei, M., Xing, Y.X., Wang, X.F., Ma, H.: [Effects of CO2 enrichment on the microstructure and ultrastructure of leaves in cucumber.] — Acta hort. sin. 29:31–34, 2002. [In Chin.]

    Article  Google Scholar 

  • Yelle, S., Beeson, R.C., Jr., Trudel, M.J., Gosselin, A.: Acclimation of two tomato species to high atmospheric CO2 — Plant Physiol. 90: 1465–1472, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Zuo, B.Y., Jiang, G.Z., Bai, K.Z., Kuang, T.Y.: [Effects of doubled-CO2 concentration on the ultrastructure of chloroplasts from Medicago sativa and Setaria italica.] —Acta bot. sin. 38: 72–76, 1996. [In Chin.]

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Technology R&D Program of China (2001BA503B02). We were grateful to Ms. Wei-Zhi Chen for her technical assistance in the TEM. The authors thank Dr. Tom Langendoen and Prof. De-Hui Zeng for their help in revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. -L. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z.P., Li, T.L. & Liu, Y.L. Effects of elevated CO2 applied to potato roots on the anatomy and ultrastructure of leaves. Biol Plant 55, 675–680 (2011). https://doi.org/10.1007/s10535-011-0167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0167-7

Additional key words

Navigation