biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 56:172-176, 2012 | DOI: 10.1007/s10535-012-0037-y

Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity

S. L. Ferreira-Silva1, E. L. Voigt2, E. N. Silva1, J. M. Maia2, T. C. R. Aragão1, J. A. G. Silveira1,*
1 Departamento de Bioquímica e Biologia Molecular, Instituto Nacional de Ciência e Tecnologia em Salinidade, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
2 Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil

The work evaluated the role of enzymatic and non-enzymatic antioxidants in cashew (Anacardium occidentale) leaves under 0, 50, 100, 150 and 200 mM NaCl. Salt stress increased protein oxidation and decreased the lipid peroxidation, indicating that lipids are less susceptible to oxidative damage. The superoxide dismutase (SOD) activity was not changed, ascorbate peroxidase (APX) activity steadily decreased while the catalase (CAT) activity strongly increased with the increasing NaCl concentration. High salinity also induced alterations in the ascorbate (AsA) and glutathione (GSH) redox state. The salt resistance in cashew may be associated with maintaining of SOD activity and upregulation of CAT activity in concert with the AsA and GSH antioxidants.

Keywords: Anacardium occidentale; antioxidative enzymes; ascorbate peroxidase; catalase; NaCl; oxidative stress; superoxide dismutase
Subjects: ascorbate peroxidase; catalase; NaCl; oxidative stress; superoxide dismutase; water content; lipid hydroperoxides; hydrogen peroxide; protein; potassium; ascorbate; glutathione

Received: October 7, 2010; Accepted: February 15, 2011; Published: March 1, 2012  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ferreira-Silva, S.L., Voigt, E.L., Silva, E.N., Maia, J.M., Aragão, T.C.R., & Silveira, J.A.G. (2012). Partial oxidative protection by enzymatic and non-enzymatic components in cashew leaves under high salinity. Biologia plantarum56(1), 172-176. doi: 10.1007/s10535-012-0037-y
Download citation

References

  1. Alscher, R.G., Erturk, N., Heath, L.S.: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. - J. exp. Bot. 53: 1331-1341, 2002. Go to original source...
  2. Azevedo-Neto, A.D., Prisco, J.T., Enéas-Filho, J., Abreu, C.E.B., Gomes-Filho, E.: Effects of salt stress on antioxidant enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. - Environ. exp. Bot. 56: 87-94, 2006. Go to original source...
  3. Boscolo, P.R.S., Menossib, M., Jorgea, R.A.: Aluminuminduced oxidative stress in maize. - Phytochemistry 62: 181-189, 2003. Go to original source...
  4. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  5. Cavalcanti, F.R., Lima, J.P.M.S., Ferreira-Silva, S.L., Viégas, R.A., Silveira, J.A.G.: Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. - J. Plant Physiol. 164: 591-600, 2007. Go to original source...
  6. Cavalcanti, F.R., Oliveira, J.T.A., Martins-Miranda, A.S., Viégas, R.A., Silveira, J.A.G.: Superoxide dismutase, catalase and peroxide activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. - New Phytol. 163: 563-571, 2004. Go to original source...
  7. Chai, Y.Y., Jiang, C.D., Shi, L., Shi, T.S., Gu, W.B.: Effects of exogenous spermine on sweet sorghum during germination under salinity. - Biol. Plant. 54: 145-148, 2010. Go to original source...
  8. Cheeseman, J.M.: Hydrogen peroxide concentrations in leaves under natural conditions. - J. exp. Bot. 57: 2435-2444, 2006. Go to original source...
  9. Daneshmand, F., Arvin, M.J., Kalantari, K.M.: Acetylsalicylic acid ameliorates negative effects of NaCl or osmotic stress in Solanum stoloniferum in vitro. - Biol. Plant. 54: 781-784, 2010. Go to original source...
  10. Del Río, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M., Barroso, J.B.: Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging and role in cell signaling. - Plant Physiol. 141: 330-335, 2006. Go to original source...
  11. Demiral, T., Türkan, I.: Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. - Environ. exp. Bot. 53: 247-257, 2005. Go to original source...
  12. Ferreira-Silva, S.L., Silveira, J.A.G., Voigt, E.L., Soares, L.S.P., Viégas, R.A.: Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. - Braz. J. Plant Physiol. 20: 51-59, 2008. Go to original source...
  13. Foyer, C.H., Bloom, A.J., Queval, G., Noctor, G.: Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. - Annu. Rev. Plant Biol. 60: 455-484, 2009. Go to original source...
  14. Foyer, C., Noctor G.: Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. - Plant Cell Environ. 28: 1056-1071, 2005. Go to original source...
  15. Foyer, C.H., Noctor, G.: Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. - Physiol. Plant. 119: 355-364, 2003. Go to original source...
  16. Gomez, J.M., Hernandez, J.A., Jimenez, A., Del Rio, L.A., Sevilla, F.: Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. - Free Radical Res. 31: 11-18, 1999. Go to original source...
  17. Griffth, O.W.: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. - Anal. Biochem. 106: 207-211, 1980. Go to original source...
  18. Hamed, K.B., Youssef, N.B., Ranieri, A., Zarrouk, M., Abdelly, C.: Changes in content and fatty acid profiles of total lipids and sulfolipids in the halophyte Crithmum maritimum under salt stress. - J. Plant Physiol. 162: 599-602, 2005. Go to original source...
  19. Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. - Arch. Biochem. Biophys. 125: 189-198, 1968. Go to original source...
  20. Hernandez, M., Fernandez-Garcia, N., Diaz-Vivancos, P., Olmos, E.: A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. - J. exp. Bot. 61: 521-535, 2010. Go to original source...
  21. Hoagland, D.R., Arnon, D.I.: The water culture method for growing plants without soil. - Calif. Agr. Exp. Sta. Circular 347: 1-39, 1950.
  22. Kampfenkel, K., Montagu, M.V., Inzé, R.: Extraction and determination of ascorbate and dehydroascorbate from plant tissue. - Anal. Biochem. 225: 165-167, 1995. Go to original source...
  23. Kocsy, G., Szalai, G. Galiba, G.: Induction of glutathione synthesis and glutathione reductase activity by abiotic stresses in maize and wheat. - Sci. World J. 2: 1699-1705, 2002. Go to original source...
  24. Kranner, I., Beckett, R.P., Wornik, S., Zorn, M., Pfeifhofer, H.W.: Revival of a resurrection plant correlates with its antioxidant status. - Plant J. 31: 13-24, 2002. Go to original source...
  25. Levine, R.L., Willians, J.A., Stadtman, E.R., Shacter, E.: Carbonyl assays for determination of oxidatively modified proteins. - Methods Enzymol, 233: 346-363, 1994. Go to original source...
  26. Lin, K.H., Pu, S.F.: Tissue- and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. - Biol. Plant. 54: 664-670, 2010. Go to original source...
  27. Maia, J.M., Macedo, C.E.C., Voigt, E.L., Freitas, J.B.S., Silveira, J.A.G.: Antioxidative enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. - Biol. Plant. 54: 159-163, 2010. Go to original source...
  28. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R.: Reactive oxygen species homeostasis and signaling during drought and salinity stresses. - Plant Cell Environ. 33: 453-467, 2010. Go to original source...
  29. Miller, G., Suzuki, N., Rizhsky, L., Hegie, A., Koussevitzky, S., Mittler, R.: Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. - Plant Physiol. 144: 1777-1785, 2007. Go to original source...
  30. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. - Trend Plant Sci. 7: 405-410, 2002. Go to original source...
  31. Mittova, V., Theodoulou, F.L., Kiddle, G., Gomez, L., Volokita, M., Tal, M., Foyer, C.H., Guy, M.: Coordinate induction of glutathione biosynthesis and glutathionemetabolizing enzymes is correlated with salt tolerance in tomato. - FEBS Lett. 554: 417-421, 2003. Go to original source...
  32. Møller, I.M., Jensen, P.E., Hansson, A.: Oxidative modifications to cellular components in plants. - Annu. Rev. Plant Biol. 58: 459-481, 2007. Go to original source...
  33. Moran, J.F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R.V., Aparicio-Tejo, P.: Drought induces oxidative stress in pea plants. - Planta 194: 346-352, 1994. Go to original source...
  34. Munns, R.: Genes and salt tolerance: bringing them together. - New Phytol. 167: 645-663, 2005. Go to original source...
  35. Munns, R., Tester, M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651-81, 2008. Go to original source...
  36. Palatnik, J.F., Valle, E.M., Federico, M.L., Gómez, L.D., Melchiorre, M.N., Paleo, A.D., Carrillo, N., Acevedo, A.: Status of antioxidant metabolites and enzymes in a catalasedeficient mutant of barley (Hordeum vulgare L.). - Plant Sci. 162: 363-371, 2002. Go to original source...
  37. Shalata, A., Neumann, P.M.: Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. - J. exp. Bot. 52: 2207-2211, 2001. Go to original source...
  38. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., Yoshimura, Y.: Regulation and function of ascorbate peroxidase isoenzymes. - J. exp. Bot. 53: 1305-1319, 2002. Go to original source...
  39. Silva, E.N., Ferreira-Silva, S.L., Fontenele, A.V. Ribeiro, R.V., Viégas, R.A., Silveira, J.A.G.: Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. - J. Plant Physiol. 167: 1157-1164, 2010. Go to original source...
  40. Silveira, J.A.G., Viégas, R.A., Rocha, I.M.A., Moreira, A.C.O.M., Moreira, R.A., Oliveira, J.T.A.: Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. - J. Plant Physiol. 160: 115-123, 2003. Go to original source...
  41. Tarchoune, I., Sgherri, G., Izzo, Lachaal, T.M., Ouerghi, Z., Navari-Izzo, F.: Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. - Plant Physiol. Biochem. 48: 772-777, 2010. Go to original source...
  42. Tausz, M., Sircelj, H., Grill, D.: The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? - J. exp. Bot. 55: 1955-1962, 2004. Go to original source...
  43. Vaidyanathan, H., Sivakumar, P., Chakrabarty, R., Thomas, G.: Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) - differential response in salt-tolerant and sensitive varieties. - Plant Sci. 165: 1411-1418, 2003. Go to original source...
  44. Zhong, L., Xu, Y.H., Wang, J.B.: The effect of 5-azacytidine on wheat seedlings responses to NaCl stress. - Biol. Plant. 54: 753-756, 2010. Go to original source...