Skip to main content
Log in

Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The effects of trehalose pretreatment on thylakoid membranes of winter wheat were investigated under heat stress. Under normal growth conditions, the winter wheat synthesized 502 μg g−1(f.m.) trehalose, which increased to 1250 μg g−1(f.m.) under heat stress and to 1658 μg g−1(f.m.) in trehalose-pretreated seedlings. Under heat stress, proteins in the thylakoid membranes and the photosynthetic capacity were protected by trehalose pretreatment. Moreover, the electrolyte leakage, contents of malondialdehyde, superoxide anion and hydrogen peroxide, and lipoxygenase activity in trehalose-pretreated seedlings were lower than in the non-pretreated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCBQ:

2,6-dichloro-p-benzoquinone

DGDG:

digalactosyl diacylglycerol

IUFA:

unsaturation indexes of fatty acids

LOX:

lipoxygenase

MDA:

malondialdehyde

MGDG:

monogalactosyl diacylglycerol

O2 ·− :

superoxid anion

PC:

phosphatidylcholine

PG:

phosphatidylglycerol

PS 2:

photosystem 2

ROS:

reactive oxygen species

SQDG:

sulfoquinovosyl diacylglycerol

T6P:

trehalose-6-phosphate

References

  • Aghdasi, M., Smeekens, S., Schluepman, H.: Microarray analysis of gene expression patterns in Arabidopsis seedlings under trehalose, sucrose and sorbitol treatment. — Int. J. Plant Prod. 2: 309–320, 2008.

    CAS  Google Scholar 

  • Bae, H., Herman, E., Bailey, B., Bae, H.J., Sicher, R.: Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. — Physiol. Plant. 125: 114–126, 2005.

    Article  CAS  Google Scholar 

  • Benaroudj, N., Lee, D.H., Goldberg, A.L.: Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. — J. biol. Chem. 276: 24261–24267, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. — Can. J. Physiol. Pharmacol. 37: 911–917, 1959.

    Article  CAS  Google Scholar 

  • Camara-Artigas, A., Brune, D., Allen, J.P.: Interactions between lipids and bacterial reaction centers determined by protein crystallography. — Proc. nat. Acad. Sci. USA 99:11055–11060, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Cherian, S., Reddy, M.P., Ferreira, R.B.: Transgenic plants with improved dehydration-stress tolerance: progress and future prospects. — Biol. Plant. 50: 481–495, 2006.

    Article  CAS  Google Scholar 

  • Couée, I., Sulmon, C., Gouesbet, G., El Amrani, A.: Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. — J. exp. Bot. 57:449–459, 2006.

    Article  PubMed  Google Scholar 

  • Dionisio-Sese, M.L., Tobita, S.: Antioxidant response of rice seedlings to salinity stress. — Plant Sci. 135: 1–9, 1998.

    Article  CAS  Google Scholar 

  • El-Bashiti, T., Hamamci, H., Öktem H.A., Yücel, M.: Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. — Plant Sci. 169: 47–54, 2005.

    Article  CAS  Google Scholar 

  • El-Shintinawy, F., Ebrahim, M.K.H., Sewelam, N., El-Shourbagy, M.N.: Activity of photosystem 2, lipid peroxidation, and the enzymatic antioxidant protective system in heat shocked barley seedlings. — Photosynthetica 42: 15–21, 2004.

    Article  CAS  Google Scholar 

  • Garg, A.K., Kim, J.K., Owens, T.G., Ranwala, A.P., Choi, Y.D., Kochian, L.V., Wu, R.J.: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. — Proc. nat. Acad. Sci. USA 99:15898–15903, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Gielwanowska, I., Szczuka, E., Bednara, J., Górecki, R.: Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. — Ann. Bot. 96: 1109–1119, 2005.

    Article  PubMed  Google Scholar 

  • Haldimann, P., Feller, U.: Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. — Plant Cell Environ. 28: 302–317, 2005.

    Article  CAS  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. 1. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Jang, I.C., Oh, S.J., Seo, J.S., Choi, W.B., Song, S., Kim, C.H., Kim, Y.S., Seo, H.S., Choi, Y.D., Nahm, B.H., Kim, J.K.: Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. — Plant Physiol. 131: 516–524, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K., Portis, A.R., Jr.: Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. — Plant Cell Physiol. 46: 522–530, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Komayama, K., Khatoon, M., Takenaka, D., Horie, J., Yamashita, A., Yoshioka, M., Nakayama, Y., Yoshida, M., Ohira, S., Morita, N., Velitchkova, M., Enami, I., Yamamoto, Y.: Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids. — Biochim. biophys. Acta 1767: 838–846, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Larkindale, J., Huang, B.: Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat acclimated creeping bentgrass (Agrostis stolonifera). — Environ. exp. Bot. 51: 57–67, 2004.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H.K.: Chlorophylls and carotenoids — pigments of photosynthetic biomembranes. — In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Pp. 350–382. Academic Press, San Diego — New York — Berkeley — Boston — London — Sydney — Tokyo — Toronto 1987.

    Google Scholar 

  • Liu, Y., Hao, Y.Y., Liu, Y.Y., Huang, W.D.: Effects of wounding and exogenous jasmonic acid on the peroxidation of membrane lipid in pea seedlings leaves. — Agr. Sci. Chin. 38:614–620, 2005.

    Google Scholar 

  • Losa, D.A., Murata, N.: Membrane fluidity and its roles in the perception of environmental signals. — Biochim. biophys. Acta 1666:142–157, 2004.

    Google Scholar 

  • Luo, Y., Li, W.M., Yang, X.H., Wang, W.: Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? — Environ. exp. Bot. 63: 378–384, 2008.

    Article  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F.: Reactive oxygen gene network of plants. — Trends Plant Sci. 9: 490–498, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W.H., Liu, Y.X., Hwang, I., Jones, T., Sheen, J.: Role of the Arabidopsis glucose sensor HXK1 in nutrient, light and hormonal signalling. — Science 300: 332–336, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama, Y., Allakhverdiev, S.I., Yamamoto, H., Hayashi, H., Murata, N.: Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. — Biochemistry 43: 11321–11330, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Okazaki, K., Sato, N., Tsuji, N., Tsuzuki, M., Nishida, I.: The significance of C16 fatty acids in the sn-2 positions of glycerolipids in the photosynthetic growth of Synechocystis sp. PCC6803. — Plant Physiol. 141: 546–556, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Parida, A.K., Das, A.B., Mittra, B.: Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. — Photosynthetica 41: 191–200, 2003.

    Article  CAS  Google Scholar 

  • Páli, T., Garab, G., Horváth, L.I., Kóta, Z.: Functional significance of the lipid-protein interface in photosynthetic membranes. — Cell. Mol. Life Sci. 60: 1591–1606, 2003.

    Article  PubMed  Google Scholar 

  • Paul, M.J., Parimavesi, L.F., Jhurreea, D., Zhang, Y.H.: Trehalose metabolism and signaling. — Annu. Rev. Plant Biol. 59: 417–441, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Peever, T.L., Higgins, V.J.: Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum. — Plant Physiol. 90: 867–875, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, C.S., Hünenberger, P.H.: The effect of trehalose on a phospholipid membrane under mechanical stress. — Biophys. J. 95: 3525–3534, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Ramon, M., Rolland, F.: Plant development: introducing trehalose metabolism. — Trends Plant Sci. 12: 185–188, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Rolland, F., Baena-Gonzalez, E., Sheen, J.: Sugar sensing and signalling in plants: conserved and novel mechanisms. — Annu. Rev. Plant Biol. 57: 675–709, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Sebollela, A., Louzada, P.R., Sola-Penna, M., Sarone-Williams, V., Coelho-Sampaio, T., Ferreira, S.T.: Inhibition of yeast glutathione reductase by trehalose: possible implications in yeast survival and recovery from stress. — Int. J. Biochem. Cell Biol. 36: 900–908, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Welti, R., Li, W.Q., Li, M.Y., Sang, Y.M., Biesiada, H., Zhou, H.E., Rajashekar, C.B., Williams, T.D., Wang, X.: Profiling membrane lipids in plant stress responses. Role of phospholipase Dα in freezing lipid changes in Arabidopsis. — J. biol. Chem. 277: 31994–32002, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X.H., Liang, Z., Wen, X.G.: Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. — Plant mol. Biol. 66: 73–86, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X.X., Ma, Q.Q., Liang, C., Fang, Y., Wang, Y.Q., Wang, W.: Effect of glycinebetaine on function of thylakoid membranes in wheat flag leaves under drought stress. — Biol. Plant. 51: 584–588, 2007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No.30671259), the Fund for Doctor of Shandong Province (No. 2008BS07007) and the Innovation Fund of Shandong Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Li, F., Wang, G.P. et al. Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. Biol Plant 54, 495–501 (2010). https://doi.org/10.1007/s10535-010-0087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-010-0087-y

Additional key words

Navigation