Skip to main content
Log in

The influence of low-temperature on the photochemical activity of chloroplasts and activity of antioxidant enzymes in maize leaves

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The effects of low growth temperature on the activities of photosystems (PS) 1 and 2 and antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) in leaves of various maize inbred and hybrid genotypes (parental lines, F1 hybrids, F2 and backcross generations) were investigated. Considerable decrease of the PS 2 activity (contrary to the activity of PS 1) due to low-temperature stress was observed in the majority of genotypes/generations examined. The GR, APX and SOD activities markedly increased due to chilling, whereas the activity of CAT showed lesser changes which depended on the genotype/generation analysed. The higher susceptibility of the inbred line 2013 to low temperature was transmitted to further generations in case this line was used as the maternal parent. The intraspecific variability in photosynthetic and antioxidant parameters was caused particularly by the dominance (negative or positive), however, the level of the expression of this effect often changed after low-temperature stress and was probably the cause of the increase in the positive F1 heterosis observed in this case. Other genetic effects (e.g. the additivity, and particularly the additive or dominant maternal effects) were also found to contribute to the intraspecific variability in parameters analyzed. The dominant maternal effects possibly played an important role in maintaining positive heterosis in F2 generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA :

analysis of variance

APX:

ascorbate peroxidase

CAT:

catalase

F1, F2:

the first/second filial generation

GR:

glutathione reductase

PAR:

photosynthetically active radiation

PS:

photosystem

RH:

relative humidity

SEM:

standard error of mean

SOD:

superoxide dismutase

XTT:

3′-{1-[(phenylamino)carbonyl]-3,4-tetrazolium}-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate

References

  • Aguilera, C., Stirling, C.M., Long, S.P.: Genotypic variation within Zea mays for susceptibility to and rate of recovery from chill-induced photoinhibition of photosynthesis. — Physiol. Plant. 106: 429–436, 1999.

    Article  CAS  Google Scholar 

  • Anderson, M.D., Prasad, T.K., Stewart, C.R.: Changes in isozyme profiles of catalase, peroxidase, and glutathione-reductase during acclimation to chilling in mesocotyls of maize seedlings. — Plant Physiol. 109: 1247–1257, 1995.

    CAS  PubMed  Google Scholar 

  • Asada, K.: Ascorbate peroxidase: a hydrogen peroxide scavenging enzyme in plants. — Physiol. Plant. 85: 235–241, 1992.

    Article  CAS  Google Scholar 

  • Aroca, R., Irigoyen, J.J., Sánchez-Diaz, M.: Photosynthetic characteristics and protective mechanisms against oxidative stress during chilling and subsequent recovery in two maize varieties differing in chilling sensitivity. — Plant Sci. 161: 719–726, 2001.

    Article  CAS  Google Scholar 

  • Baer, G.R., Schrader, L.E.: Inheritance of DNA concentration, and cellular contents of soluble protein, chlorophyll, ribulose bisphosphate carboxylase, and pyruvate, Pi dikinase activity in maize leaves. — Crop Sci. 25: 916–923, 1985.

    CAS  Google Scholar 

  • Baker, N.R., Farage, P.K., Stirling, C.M., Long, S.P.: Photoinhibition of crop photosynthesis in the field at low temperature. — In: Baker, N.R., Bowyer, J.R. (ed.): Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Pp. 349–363. Bios Scientific Publ., Oxford 1994.

    Google Scholar 

  • Bertamini, M., Zulini, L., Muthuchelian, K., Nedunchezhian, N.: Low night temperature effects on photosynthetic performance in two grapevine genotypes. — Biol. Plant. 51: 381–385, 2007.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy, V., Zhu, J., Zhu, J.-K.: Cold stress regulation of gene expression in plants. — Trends Plant Sci. 12: 444–451, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Crosbie, T.M., Mock, J.J., Pearce, R.B.: Inheritance of photosynthesis in a diallel among eight maize inbred lined from Iowa Stiff Stalk Synthetic. — Euphytica 27: 657–664, 1978.

    Article  Google Scholar 

  • Del Río, L.A., Ortega, M.G., Lopez, A.L., Gorge, J.L.: A more sensitive modification of the catalase assay with Clark oxygen electrode. Application to the kinetic study of the pea-leaf enzyme. — Anal. Biochem. 80: 409–415, 1977.

    Article  PubMed  Google Scholar 

  • Eberhart, S.A., Gardner, C.O.: A general model for genetic effects. — Biometrics 22: 864–881, 1966.

    Article  Google Scholar 

  • Feierabend, J., Schaan, C., Hertwig, B.: Photoinactivation of catalase occurs under both high- and low-temperature stress conditions and accompanies photoinhibition of photosystem II. — Plant Physiol. 100: 1554–1561, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C.H., Vanacker, H., Gomez, L.D., Harbinson, J.: Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. — Plant Physiol. Biochem. 40: 659–668, 2002.

    Article  CAS  Google Scholar 

  • Fracheboud, Y., Haldimann, P., Leipner, J., Stamp, P.: Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). — J. exp. Bot. 50: 1533–1540, 1999.

    Article  CAS  Google Scholar 

  • Greer, D.H., Hardacre, A.K.: Photoinhibition of photosynthesis and its recovery in two maize hybrids varying in low tepperature tolerance. — Austr. J. Plant Physiol. 16: 189–198, 1989.

    Article  Google Scholar 

  • Haldimann, P.: Chilling-induced changes to carotenoid composition, photosynthesis and the maximum quantum yield of photosystem II photochemistry in two maize genotypes differing in tolerance to low temperature. — J. Plant Physiol. 151: 610–619, 1997.

    CAS  Google Scholar 

  • Haldimann, P.: How do changes in temperature during growth affect leaf pigment composition and photosynthesis in Zea mays genotypes differing in sensitivity to low temperature? — J. exp. Bot. 50: 543–550, 1999.

    Article  CAS  Google Scholar 

  • Hallgren, J., Öquist, G.: Adaptation to low temperature. — In: Alscher R.G., Cumming J.R. (ed.): Stress Responses in Plants: Adaptation and Acclimation Mechanisms. Pp. 265–293. Wiley-Liss, New York 1990.

    Google Scholar 

  • Hodges, D.M., Andrews, C.J., Johnson, D.A., Hamilton, R.I.: Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. — J. exp. Bot. 48: 1105–1113, 1997.

    Article  CAS  Google Scholar 

  • Holá, D., Kočová, M., Körnerová, M., Sofrová, D., Sopko, B.: Genetically based differences in photochemical activities of isolated maize (Zea mays L.) mesophyll chloroplasts. — Photosynthetica 36: 187–197, 1999.

    Article  Google Scholar 

  • Holá, D., Kočová, M., Rothová, O., Wilhelmová, N., Benešová, M.: Recovery of maize (Zea mays. L.) inbreds and hybrids from chilling stress of various duration: photosynthesis and antioxidant enzymes. — J. Plant Physiol. 164: 868–877, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Holá, D., Langrová, K., Kočová, M., Rothová, O.: Photosynthetic parameters of maize (Zea mays L.) inbred lines and their F1 hybrids: their different response to, and recovery from rapid or gradual onset of low-temperature stress. — Photosynthetica 41: 429–442, 2003.

    Article  Google Scholar 

  • Huner, N.P.A., Öquist, G., Sarhan, F.: Energy balance and acclimation to light and cold. — Trends Plant Sci. 3: 224–230, 1998.

    Article  Google Scholar 

  • Jahnke, L.S., Hull, M.R., Long, S.P.: Chilling stress and oxygen metabolizing enzymes in Zea mays amd Zea diploperennis. — Plant Cell Environ. 14: 98–104, 1991.

    Google Scholar 

  • Kingston-Smith, A.H., Harbinson, J., Foyer, C.H.: Acclimation of photosynthesis, H2O2 content and antioxidants in maize (Zea mays) grown at sub-optimal temperatures — Plant Cell Environ. 22: 1071–1083, 1999.

    Article  CAS  Google Scholar 

  • Kocsy, G., Owttrim, G., Brander, K., Brunold, C.: Effect of chilling on diurnal rhythm of enzymes involved in protection against oxidative stress in a chilling-tolerant and a chilling-sensitive maize genotype. — Physiol. Plant. 99: 249–254, 1997.

    Article  CAS  Google Scholar 

  • Körnerová, M., Holá, D.: The effect of low growth temperature on Hill reaction and photosystem 1 activities and pigment contents in maize inbred lines and their F1 hybrids. — Photosynthetica 37: 477–488, 1999.

    Article  Google Scholar 

  • Kościelniak, J., Markowski, A., Skrudlik, G., Filek, M.: Effects of some periods of variable daily exposure to temperatures of 5 and 20 °C on photosynthesis and water relations in maize seedlings. — Photosynthetica 32: 53–61, 1996.

    Google Scholar 

  • Kosová, K., Vítámvás, P., Prášil, I.T.: The role of dehydrins in plant response to cold. — Biol. Plant. 51: 601–617, 2007.

    Article  Google Scholar 

  • Krause, G.H.: Photoihibition induced by low temperatures. — In: Baker, N.R., Bowyer, J.R. (ed.): Photoinhibition of Photosynthesis. Pp. 331–348. Bios Scientific Publ., Oxford 1994.

    Google Scholar 

  • Kubo, A., Aono, M., Nakajima, N., Saji, H., Tanaka, K., Kondo, N.: Differential responses in activity of antioxidant enzymes to different environmental stress in Arabidopsis thaliana. — J. Plant Res. 112: 279–290, 1999.

    Article  CAS  Google Scholar 

  • Kudoh, H., Sonoike, K.: Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. — Planta 215: 541–548, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Leipner, J., Fracheboud, Y., Stamp, P.: Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. — Environ. exp. Bot. 42: 129–139, 1999.

    Article  CAS  Google Scholar 

  • Lidon, F.C., Loureiro, A.S., Vieira, D.E., Bilhó, E.A., Nobre, P., Costa, R.: Photoinhibition in chilling stressed wheat and maize. — Photosynthetica 39: 161–166, 2001.

    Article  CAS  Google Scholar 

  • Long, S.P., East, T.M., Baker, N.R.: Chilling damage to photosynthesis in young Zea mays L. Effect of light and temperature variation on photosynthetic CO2 assimilation. — J. exp. Bot. 34: 177–188, 1983.

    Article  Google Scholar 

  • Massacci, A., Iannelli, M.A., Pietrini, F., Loreto, F.: The effect of growth at low-temperature on photosynthetic characteristics and mechanisms of photoprotection of maize leaves. — J. exp. Bot. 46: 119–127, 1995.

    Article  CAS  Google Scholar 

  • Mehta, H., Sarkar, K.R., Sharma, S.K.: Genetic analysis of photosynthesis and productivity in corn. — Theor. appl. Genet. 84: 242–255, 1992.

    Article  Google Scholar 

  • Mifflin, B.J., Hageman, R.H.: Activity of chloroplasts isolated from maize and their F1 hybrids. — Crop Sci. 6: 185–187, 1966.

    Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nie, G.Y., Long, S.P., Baker, N.R.: The effect of development at sub-optimal growth temperatures on photosynthetic capacity and susceptibility to chilling-dependent photoinhibition in Zea mays. — Physiol. Plant. 85: 554–560, 1992.

    Article  CAS  Google Scholar 

  • Procházková, D., Wilhelmová, N.: Changes in antioxidative protection in bean cotyledons during natural and continuous irradiation-accelerated senescence. — Biol. Plant. 48: 33–39, 2004.

    Article  Google Scholar 

  • Revilla, P., Malvar, R.A., Cartea, M.E., Butron, A., Ordas, A.: Inheritance of cold tolerance at emergence and during early season growth in maize. — Crop Sci. 40: 1579–1585, 2000.

    Article  Google Scholar 

  • Scebba, F., Sebastini, L., Vitagliano, C.: Changes in activity of antioxidative enzymes in wheat (Triticum aestivum) seedlings under cold acclimation. — Physiol. Plant. 104: 747–752, 1998.

    Article  CAS  Google Scholar 

  • Schaedle, M., Bassham, J.A.: Chloroplasts glutathione reductase. — Plant Physiol. 59: 1011–1012, 1977.

    Article  CAS  PubMed  Google Scholar 

  • Shen, W.Y., Nada, K., Tachibana, S.: Oxygen radical generation in chilled leaves of cucumber (Cucumis sativus L.) cultivars with different tolerance to chilling temperatures. — J. jap. Soc. hort. Sci. 68: 780–787, 1999.

    Article  CAS  Google Scholar 

  • Schmidt, M., Grief, J., Feierabend, J.: Mode of translational activation of the catalase (cat1) mRNA of rye leaves (Secale cereale L.) and its control through blue light and reactive oxygen. — Planta 223: 835–846, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Sonoike, K.: The different rates of chilling temperatures in the photoinhibition of photosystem I and photosystem II. — J. Photochem. Photobiol. B. Biol. 48: 136–141, 1999.

    Article  CAS  Google Scholar 

  • Sowinski, P., Rudzinska-Langwald, A., Adamczyk, J., Kubica, W., Fronk, J.: Recovery of maize seedling growth, development and photosynthetic efficiency after initial growth at low temperature. — J. Plant Physiol. 162: 67–80, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Sunkar, R., Chinnusang, V., Zhu, J., Zhu, J.-K.: Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. — Trends Plant Sci. 12: 301–309, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Takac, T.: The relationship of antioxidant enzymes and some physiological parameters in maize during chilling. — Plant Soil Environ. 50: 27–32, 2004.

    CAS  Google Scholar 

  • Ukeda, H., Maeda, S., Ishii, T., Sawamura, M.: Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3′-{1-[(phenylamino)-carbonyl]-3,4-tetrazolium}-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate reduction by xantine-xantine oxidase. — Anal. Biochem 251: 206–209, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Van Heerden, P.D.R., Krüger, H.J.G.: Separately and simultaneously induced dark chilling and drought stress effect on photosynthesis, proline accumulation and antioxidant metabolism in soybean. — J. Plant Physiol. 159: 1077–1086, 2002.

    Article  Google Scholar 

  • Verheul, M.J., Picatto, C., Stamp, P.: Growth and development of maize (Zea mays L.) seedlings under chilling conditions in the field. — Eur. J. Agron. 5: 31–43, 1996.

    Article  Google Scholar 

  • Walker, M.A., McKersie, B.D.: Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato — J. Plant Physiol. 141: 234–239, 1993.

    CAS  Google Scholar 

  • Wise, R.R.: Chilling-enhanced photooxidation: The production, action and study of reactive oxygen species produced during chilling in the light. — Photosynth. Res. 45: 79–97, 1995.

    Article  CAS  Google Scholar 

  • Yamori, W., Suzuki, K., Noguchi, K., Nakai, M., Terashima, I.: Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. — Plant Cell Environ. 29: 1659–1670, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Zou, H., Wu, Z., Yang, Q., Zhang, X., Cao, M., Jia, W., Huang, C., Xiao, X.: Gene expression analyses of Zm Pti1, encoding a maize Pti-kinase, suggest a role in stress signaling. — Plant Sci. 171: 99–105, 2006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kočová.

Additional information

Acknovledgements: The authors are grateful to Dr. J. Poruba from CEZEA Breeding Station for the supply of maize kernels and to our graduate student K. Langerová for the help with experiments. We appreciate the participation of Drs. D. Procházková and Z. Mytinová in assays of the enzyme activities. This study was supported by Grants No. 522/01/0846 of the Grant Agency of the Czech Republic and No. 0021620858 of the Ministry of Education, Youth and Sports of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kočová, M., Holá, D., Wilhelmová, N. et al. The influence of low-temperature on the photochemical activity of chloroplasts and activity of antioxidant enzymes in maize leaves. Biol Plant 53, 475–483 (2009). https://doi.org/10.1007/s10535-009-0088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0088-x

Additional key words

Navigation