Skip to main content
Log in

Anthocyanin accumulation and expression pattern of anthocyanin biosynthesis genes in developing wheat coleoptiles

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Anthocyanin accumulation and expression pattern of anthocyanin biosynthesis genes were investigated in developing coleoptiles of wheat (Triticum aestivum L.). In epidermal cell layers of the growing coleoptiles of cv. Hope, anthocyanins started to accumulate between day 2 and 3 after germination, reached their maximum on day 6 and then decreased while another cultivar, Chinese Spring (CS) did not accumulate anthocyanin pigments. None of the six anthocyanin biosynthesis genes was upregulated in coleoptiles of both cvs. grown in the dark, whereas all genes were activated by light in coleoptiles of cv. Hope. Transcript levels of all the six genes were relatively low on day 2, increased from days 3 to 5 and then declined to almost non-detectable levels on day 6. In coleoptiles of CS grown in the light, the early biosynthesis genes (EBGs) were expressed, but the three late biosynthesis genes (LBGs) were not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANS:

anthocyanidin synthase

CHI:

chalcone-flavanone isomerase

CHS:

chalcone synthase

CS:

Chinese spring

EBGs:

early biosynthesis genes

F3H:

flavanone 3-hydroxylase

DFR:

dihydroflavonol 4-reductase

LBGs:

late biosynthesis genes

UFGT:

UDP-glucose flavonoid 3-oxy-glucosyltransferase

References

  • Borevitz, J.O., Xia, Y., Blount, J.R.A. Lamb, C.D.: Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis.-Plant Cell 12: 2383–2393, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Christie, P.J., Alfenito, M.R., Walbot, V.: Impact of low-temperature on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings.-Planta 194: 541–549, 1994.

    Article  CAS  Google Scholar 

  • Cone, K.C., Burr, F.A., Burr, B.: Molecular analysis of the maize anthocyanin regulatory locus C1.-Proc. nat. Acad. Sci. USA 83: 9631–9635, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Gale, M.D., Flavell, R.V.: The genetic control of anthocyanin biosynthesis by homoeologous chromosome in wheat.-Genet. Res. Cambridge 18: 237–244, 1971.

    Google Scholar 

  • Grotewold, E., Drommond, B.J., Bowen, B. Peterson, T.: The myb homologus P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthesis gene subset.-Cell 76: 543–553, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Himi, E., Nisar, A., Noda, K.: Colour genes (R and RC) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat.-Genome 48: 747–754, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Huits, H.S.M., Gerats, A.G.M., Kreike, M.M., Mol, J.N.M., Koes, R.E.: Genetic control of dihydroflavonol 4-reductase gene expression in Petunia hybrida.-Plant J. 6: 295–310, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina, E.K., Pestsova, E.G., Roder, M.S.: A Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.).-Theor. appl. Genet. 104: 632–637, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Koes, R.E., Quattrocchio, F., Mol, J.N.M.: The flavonoid pathway in plants: function and evolution.-BioEssays 16: 123–131, 1994.

    Article  CAS  Google Scholar 

  • Kuspira, J., Unaru, J.: Determination of the number and dominance relationships of genes on substituted chromosomes in common wheat, Triticum aestivum L.-Can. J. Plant Sci. 38: 199–205, 1958.

    Article  Google Scholar 

  • Lu, Q., Qing, Y.: cDNA cloning and expression of anthocyanin biosynthetic genes in wild potato (Solanum pinnatisectum).-Afr. J. Biotechnol. 5: 811–818, 2006.

    CAS  Google Scholar 

  • Ludwig, S.R., Habera, L.F., Dellaporta, S.L., Wessler, S.R.: Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production encodes a protein similar to transcriptional activators and contains the myc-homology region.-Proc. nat. Acad. Sci. USA 86: 7092–7096, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Marrs, K.A., Kaufman, L.S.: Rapid transcriptional regulation of the Cab and pEA207 gene families in peas by blue light in the absence of cytoplasmic protein synthesis.-Planta 183: 327–333, 1991.

    Article  CAS  Google Scholar 

  • Martin, C., Gerats, T.: Control of pigment biosynthesis genes during petal development.-Plant Cell 5: 1253–1264, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Mol, J., Grotewold, E., Koes, R. E.: How genes paint flowers and seeds.-Trends Plant Sci. 3: 212–217, 1998.

    Article  Google Scholar 

  • Nesi, N., Jond, C., Debeaujo, I., Caboche, M., Lepineic, L.: The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed.-Plant Cell 13: 2099–2114, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Nisar, A., Maekawa, M., Utsugi, S., Himi, E., Albet, H., Rikiishi, K., Noda, K.: Transient expression of anthocyanin in developing wheat coleoptile by maize C1 and B-peru regulatory genes for anthocyanin synthesis.-Breed. Sci. 54: 33–36, 2003.

    Google Scholar 

  • Paz-Ares, J., Ghosal, D., Wienand, U., Peterson, P.A., Saedler H.: The regulatory C1 locus of Zea mays encodes a protein with homology to MYB-related protooncogene products and with structural similarities to transcriptional activators.-EMBO J. 6: 3553–3558, 1987.

    PubMed  CAS  Google Scholar 

  • Petroni, K., Cominelli, E., Consonni, G., Gusmaroli, G., Gavazzi, G., Tonelli, C.: The tissue specific expression of the maize regulatory gene Hopi determines germination-dependent anthocyanin accumulation.-Genetics 155: 323–336, 2000.

    PubMed  CAS  Google Scholar 

  • Piazza, P., Procissi, A., Jenkins, G.I., Tonelli, C.: Members of the C1/pl1 regulatory gene family mediate the response of maize aleurone and mesocotyl to different light qualities and cytokinins.-Plant Physiol. 128: 1077–1086, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Todd, J.J., Vodkin, L.O.: Pigmented soybean seed coats accumulate proanthocyanidins during development.-Plant Physiol. 102: 63–670, 1993.

    Google Scholar 

  • Zeven, A.C.: The colour of the coleoptile of wheat. 2. A review and geographical distribution of the purple coleoptile of Triticum aestivum.-Euphytica 22: 471–478, 1973.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, N., Maekawa, M. & Noda, K. Anthocyanin accumulation and expression pattern of anthocyanin biosynthesis genes in developing wheat coleoptiles. Biol Plant 53, 223–228 (2009). https://doi.org/10.1007/s10535-009-0043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0043-x

Additional key words

Navigation