Skip to main content
Log in

Production of recombinant human lactoferrin from transgenic plants

  • Review
  • Published:
Biologia Plantarum

Abstract

Molecular farming provides a powerful tool for low cost production of recombinant proteins with pharmaceutical value. The use of transgenic plants has been increasingly tested as alternative system for obtaining biologically active human lactoferrin in plants. Precise selection of plant species, transformation techniques and expression cassettes, in addition to conduction of detailed glycosylation and immunogenicity studies, serves as basis of obtaining safe recombinant human lactoferrin in high concentrations for the use of pharmacy. On the other hand, expression of antimicrobial protein lactoferrin in plants is a promising opportunity for crop quality improvement by increasing plant disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Lf:

lactoferrin

References

  • Anzai, H., Takaiwa, F., Katsumata, K.: Production of human lactoferrin in transgenic plants.-In: Shimazaki, K., Tsuda, H., Tomita, M., Kuwata, T., Perraudin, J.-P. (ed.): Lactoferrin: Structure, Function and Applications. Pp. 265–271. Elsevier, Amsterdam 2000.

    Google Scholar 

  • Arakawa, T., Chong, D.K.X., Langridge, W.H.R.: Efficacy of a food plant based oral cholera toxin B subunit vaccine.-Nature Biotechnol. 16: 292–297, 1998.

    Article  CAS  Google Scholar 

  • Bardor, M., Faveeuw, C., Fitchette, A.-C., Gilbert, D., Galas, L., Trottein, F., Faye, L., Lerouge P.: Immunoreactivity in mammals of two typical plant glyco-epitopes, core α(1,3)-fucose and core xylose.-Glycobiology 13: 427–434, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Bardor, M., Loutelier-Bourhis, C., Paccalet, T., Cosette, P., Fitchette, A.-C., Vézina, L.-P., Trépanier, S., Dargis, M., Lemieux, R., Lange, C., Faye, L., Lerouge, P.: Monoclonal C5-1 antibody produced in transgenic alfalfa plants exhibits a N-glycosylation that is homogenous and suitable for glycol-engineering into human-compatible structures.-Plant Biotechnol. J. 1: 451–462, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Bříza, J., Pavingerová, D., Vlasák J., Ludvíková, V., Niedermeierová, H.: Production of human papillomavirus type 16 E7 oncoprotein fused with β-glucuronidase in transgenic tomato and potato plants.-Biol. Plant. 51: 268–276, 2007.

    Article  Google Scholar 

  • Busse, U., Levée, V., Trépanier, S., Vézina, L.-P.: Production of antibodies in alfalfa (Medicago sativa).-In: Erickson L. (ed.): Molecular Farming of Plants and Animal for Human and Veterinary Medicine. Pp. 199–219. J. Wiley & Sons, New York 2001.

    Google Scholar 

  • Chen, M., Liu, X., Wang, Z., Song, J., Qi, Q., Wang, P.G.: Modification of Plant N-glycans processing: the future of producing therapeutic protein by transgenic plants.-Med. Res. Rev. 25: 343–360, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Choi, S.-M., Lee, O.-S., Kwon, S.-Y., Kwak, S.-S., Yu, D.-Y., Lee, H.-S.: High expression of a human lactoferrin in transgenic tobacco cell cultures.-Biotechnol. Lett. 25: 213–218, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Chong, D.K.X., Langridge, W.H.R.: Expression of full-length bioactive antimicrobal human lactoferrin in potato plants.-Transgenic Res. 9: 71–78, 2000.

    Article  PubMed  CAS  Google Scholar 

  • D’Aoust, M.-A., Lerouge, P., Busse, U., Bilodeau, P., Trépanier, S., Gomord, V., Faye, L., Vézina, L-P.: Efficient and reliable production of pharmaceuticals in alfalfa.-In: Fischer, R., Schillberg, S. (ed.): Molecular Farming. Pp. 1–12. Wiley-VCH-Verlag, Weinheim 2004.

    Chapter  Google Scholar 

  • Damiens, E., Mazurier, J., El Yazidi, I., Masson, M., Duthille, I., Spik, G., Boilly-Marer, Y.: Effects of human lactoferrin on NK cell cytotoxicity against haematopoietic and epithelial tumor cells.-Biochim. biophys. Acta 1402: 277–287, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, R., Emans, N., Schuster, F., Hellwig, S., Drossard, J.: Towards molecular farming in the future: using plant cell-suspension cultures as bioreactor.-Biotechnol. appl. Biochem. 30: 109–112, 1999.

    PubMed  CAS  Google Scholar 

  • Fischer, R., Stoger, E., Schillberg, S., Christou, P., Twyman, R.M.: Plant-based productions of biopharmaceuticals.-Curr. Opin. Plant Biol. 7: 152–158, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hendrixson, D.R., Qiu, J., Shewry, S.C., Fink, D.L., Petty, S., Baker, E.N., Plaut, A.G., Geme III, J.W.St.: Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites.-Mol. Microbiol. 47: 607–617, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Horn, M.E., Woodard, S.L., Howard, J.A.: Plant molecular farming: systems and products.-Plant Cell Rep. 22: 711–720, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Kamenarova, K., Gecheff, K., Stoyanova, M., Muhovski, Y., Anzai, H., Atanassov, A.: Production of recombinant human lactoferrin in transgenic barley.-Biotechnol. Biotechnol. Eq. 21: 18–27, 2007.

    CAS  Google Scholar 

  • Kanyshkova, T.G., Babina, S.E., Semenov, D.V., Isaeva, N., Vlassov, A.V., Neustroev, K.N., Kul’minskaya, A.A., Buneva, V.N., Nevinsky, G.A.: Multiple enzymic activities of human milk lactoferrin.-Eur. J. Biochem. 270: 3353–3361, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, H., Lönnerdal, B.: Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush-border membranes.-Amer. J. Physiol. 261: G841–G846, 1991.

    PubMed  CAS  Google Scholar 

  • Krimpenfort, P.: The production of human lactoferrin in the milk of transgenic animals.-Cancer Detect Prev. 17: 301–305, 1993.

    PubMed  CAS  Google Scholar 

  • Kwon, S.Y., Jo, S.H., Lee, O.S., Choi, S.M., Kwak, S.S., Lee, H.S.: Transgenic ginseng cell lines that produse high levels of a human lactoferrin.-Planta med. 69: 1005–1008, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T.-J., Coyne, P.P., Clemente, T.E., Mitra, A.: Partial resistance to bacterial wilt in transgenic tomato plants expressing antibacterial Lactoferrin gene.-J. amer. Soc. hort. Sci. 127: 158–168, 2002.

    CAS  Google Scholar 

  • Liang, Q., Richardson, T.: Expression and characterization of human lactoferrin in yeast Saccharomyces cerevisiae.-J. Agr. Food Chem. 41: 1800–1807, 1993.

    Article  CAS  Google Scholar 

  • Liu, J.R., Lee, M.H., Lee, S.H., Yu, D.-Y., Lee, K.-K., Chung, W.-I.: Expression of human lactoferrin gene in transgenic tobacco plants: feasibility of virus resistance.-In: Proceedings of the 1st Japan Korea Joint Seminar on the Production of Recombinant Proteins and Transgenic Animals in Present and Future. Pp. 39–45. 1996.

  • Liu, T., Zhang, Y.-Z., Wu, X.-F.: High level expression of functionally active human lactoferrin in silkworm larvae.-J. Biotechnol. 118: 246–256, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Lönnerdal, B.: Expression of human milk proteins in plants.-J. amer. Coll. Nutr. 21: 218S–221S, 2002.

    Google Scholar 

  • Mason, H.S., Lam, D.M.K., Arntzen, C.J.: Expression ot hepatitis B surface antigen in transgenic plants.-Proc. nat. Acad. Sci. USA 89: 11745–11749, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Min, S.R., Woo, J.W., Jeong, W.J., Han, S.K., Lee, Y.B., Liu, J.R.: Production of human lactoferrin in transgenic cell suspension cultures of sweet potato.-Biol. Plant. 50: 131–134, 2006.

    Article  CAS  Google Scholar 

  • Mitra, A., Zhang, Z.: Expression of a human lactoferrin cDNA in tobacco cells produces antibacterial protein(s).-Plant Physiol. 106: 977–981, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Nandi, S., Suzuki, Y.A., Huang, J., Yalda, D., Pham, P., Wu, L., Bartley, G., Huang, N., Lönnerdal, B.: Expression of human lactoferrin in transgenic rice grains for the application in infant formula.-Plant Sci. 163: 713–722, 2002.

    Article  CAS  Google Scholar 

  • Naot, D., Grey, A., Reid, I.R., Cornish, J.: Lactoferrin — A novel bone growth factor.-Clin. med. Res. 3: 93–101, 2005.

    Article  PubMed  Google Scholar 

  • Nuijens, J.H., Van Berkel, P.H., Geerts, M.E., Hartevelt, P.P., De Boer, H.A., Van Veen, H.A., Pieper, F.R.: Characterization of recombinant human lactoferrin secreted in milk of transgenic mice.-J. biol. Chem. 272: 8802–8807, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Platenburg, G.J., Kootwijk, E.P., Kooiman, P.M., Woloshuk, S.L., Nuijens, J.H., Krimpenfort, P.J., Pieper, F.R., De Boer, H.A., Strijker, R.: Expressiom of human lactoferrin in milk of transgenic mice.-Transgenic Res. 3: 99–108, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Salmon, V., Legrand, D., Slomianny, M.-C., Yazidi, I.E., Spik, G., Gruber, V., Bournat, P., Olagnier, B., Mison, D., Theisen, M., Mérot, B.: Production of human lactoferrin in transgenic tobacco plants.-Protein Exp. Purif. 13: 127–135, 1998.

    Article  CAS  Google Scholar 

  • Samyn-Petit, B., Dubos, J.-P.W., Chirat, F., Coddeville, B., Demaizieres, G., Farrer, S., Slomianny, M.-C., Theisen, M., Delannoy, P.: Comparative analysis of the site-specific N-glycosylation of human lactoferrin produced in maize and tobacco plants.-Eur. J. Biochem. 270: 3235–3242, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Samyn-Petit, B., Gruber, V., Flahaut, C., Wajda-Dubos, J.-P., Farrer, S., Pons, A., Desmaizieres, G., Slomianny, M.-C., Theisen, M., Delannoy, P.: N-glycosylation potential of maize: the human lactoferrin used as a model.-Glycoconjucate J. 18: 519–527, 2001.

    Article  CAS  Google Scholar 

  • Spik, G., Theisen, M.: Characterization of the post-translational biochemical processing of human lactoferrin expressed in transgenic tobacco.-Bundesgesundheitsblatt-Gesundheitsforsch-Gesundheitsschutz 43: 104–109, 2000.

    Article  Google Scholar 

  • Stoger, E., Ma, J.K.-C., Fischer, R., Christou, P.: Sowing the seeds of success: pharmaceutical proteins from plants.-Current Opin. Biotechnol. 16: 167–173, 2005.

    Article  CAS  Google Scholar 

  • Stowell, K.M., Rado, T.A., Funk, W.D., Tweedie, J.W.: Expression of cloned human lactoferrin in baby-hamster kidney cells.-Biochem. J. 276: 349–355, 1991.

    PubMed  CAS  Google Scholar 

  • Sunil Kumar, G.B., Ganapathi, T.R., Srinivas, L., Revathi, C.J., Bapat, V.A.: Hepatitis B surface antigen expression in NT-1 cells of tobacco using different expression cassettes.-Biol. Plant. 51: 467–471, 2007.

    Article  Google Scholar 

  • Takase, K., Hagiwara, K., Onodera, H., Nishizawa, Y., Ugaki, M., Omura, T., Numata, S., Akutsu, K., Kumura, H., Shimazaki, K.: Constitutive expression of human lactoferrin and its N-lobe in rice plants to confer disease resistance.-Biochem. Cell Biol. 83: 239–249, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Twyman, R.M., Stoger, E., Schillberg, S., Christou, P., Fischer, R.: Molecular pharming in plants: host systems and expression technology.-Trends Biotechnol. 21: 570–577, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Van Berkel, P.H., Geerts, M.E., Van Veen, H.A., Kooiman, P.M., Pieper, F.R., De Boer, H.A., Nuijens, J.H.: Glycosylated and unglycosylated human lactoferrin both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis.-Biochem. J. 312: 107–114, 1995.

    PubMed  Google Scholar 

  • Van Berkel, P.H., Nuijens, J.H., Van Veen, H.A., Abrahams, J.P., Thomassen, E.A.J. The protein structure of recombinant human lactoferrin produced in the milk of transgenic cows closely matches the structure of human milk-derived lactoferrin.-Transgenic Res. 14: 397–405, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Van der Strate, B.W.A., Beljaars, L., Molema, G., Harmsen, M.C., Meijer, D.K.F.: Antiviral activities of lactoferrin.-Antiviral Res. 52: 225–239, 2001.

    Article  PubMed  Google Scholar 

  • Ward, P.P., Lo, J.Y., Duke, M., May, G.S., Headon, D.R., Conneely, O.M.: Production of biologically active recombinant human lactoferrin in Aspergillus orizae.-Bio/Technology 10: 784–789, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ward, P.P., Piddington, C.S., Cunningham, G.A., Zhou, X., Wyatt, R.D., Conneely, O.M.: A system for production of commercial quantities of human lactoferrin: a broad spectrum natural antibiotic.-Biotechnology 13: 498–503, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi, K., Tomita, M., Giehl, T.J., Ellison, R.T.: Antibacterial activity of lactoferrin and a pepsin derived lactoferrine peptide fragment.-Infect. Immun. 61: 719–728, 1993.

    PubMed  CAS  Google Scholar 

  • Zhang, Z., Coyne, D.P., Vidaver, A.K., Mitra, A.: Expression of human lactoferrin cDNA confers resistance to Ralstonia solanacearum in transgenic tobacco plants.-Phytopathology 88: 730–734, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Stefanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanova, G., Vlahova, M. & Atanassov, A. Production of recombinant human lactoferrin from transgenic plants. Biol Plant 52, 423–428 (2008). https://doi.org/10.1007/s10535-008-0086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-008-0086-4

Additional keywords

Navigation