Skip to main content

Advertisement

Log in

Piperazine derivatives as iron chelators: a potential application in neurobiology

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Polysubstituted piperazine derivatives, designed as new iron chelators, were synthesized and fully characterized by nuclear magnetic resonance and mass spectroscopy. Their potential to prevent iron-induced neurotoxicity was assessed using a cellular model of Parkinson disease. We demonstrated their ability to provide sustained neuroprotection to dopaminergic neurons that are vulnerable in this pathology. The iron chelating properties of the new compounds were determined by spectrophotometric titration illustrating that high affinity for iron is not associated with important neuroprotective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelsayed S, Ha Duong NT, Hai J, Hemadi M, El Hage Chahine JM, Verbeke P, Serradji N (2014) Design and synthesis of 3-isoxazolidone derivatives as new Chlamydia trachomatis inhibitors. Bioorg Med Chem Lett 24:3854–3860

    Article  CAS  PubMed  Google Scholar 

  • Aisen P, Listowsky I (1980) Iron transport and storage proteins. Annu Rev Biochem 49:357–393

    Article  CAS  PubMed  Google Scholar 

  • Bar-Am O, Amit T, Kupershmidt L, Aluf Y, Mechlovich D, Kabha H, Danovitch L, Zurawski VR, Youdim MB, Weinreb O (2015) Neuroprotective and neurorestorative activities of a novel iron chelator-brain selective monoamine oxidase-A/monoamine oxidase-B inhibitor in animal models of Parkinson’s disease and aging. Neurobiol Aging 36:1529–1542

    Article  CAS  PubMed  Google Scholar 

  • Bates RG, Roy RN, Robinson RA (1973) Buffer standards of tris (hydroxymethyl) methylglycine ("Tricine") for the physiological range pH 7.2 to 8.5. Anal Chem 45(9):1663–1666

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar D, Eshel G, Riederer P, Youdim MB (1992) Role of iron and iron chelation in dopaminergic-induced neurodegeneration: implication for Parkinson’s disease. Ann Neurol 32(Suppl):S105–S110

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar D, Zuk R, Gazawi H, Ljubuncic P (2004) Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders. Biochem Pharmacol 67:1965–1974

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi CF (1976) Relaxation Kinetics. Academic Press, New York, San Francisco, London. 288 Seiten

  • Binstead RA, Zuberbühler AD, Jung B (2003) Specfit Global Analysis System Version 3.0.34

  • Brouillard R (1983) How much may the equilibrium be shifted in a chemical relaxation experiment? J Chem Soc Faraday Trans 1(76):583–587

    Google Scholar 

  • Chahine JMEH, Dubois JE (1983) Kinetics and thermodynamics of the structural transformations of thiamine in neutral and basic aqueous media. The UV spectrum of the tetrahedral pseudobase intermediate. J Am Chem Soc 105:2335–2340

    Article  Google Scholar 

  • Chahine JMEH, Fain D (1994) The mechanism of iron release from transferrin. Slow-proton-transfer-induced loss of nitrilotriacetatoiron(III) complex in acidic media. Eur J Biochem 223:581–587

    Article  Google Scholar 

  • Chahine JMEH, Bauer A, Baraldo K, Lion C, Ramiandrasoa F, Kunesch G (2001) Kinetics and thermodynamics of complex formation between FeIII and two synthetic chelators of the dicatecholspermidine familiy. Eur J Inorg Chem 9:2287–2296

    Article  Google Scholar 

  • Crumbliss AL, Harrington J (2009) Iron sequestration by small molecules: thermodynamic and kinetic studies of natural siderophores and synthetic model compounds. Adv Inorg Chem 61:179–250

    Article  CAS  Google Scholar 

  • Dexter D, Carter C, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1986) Lipid peroxidation as cause of nigral cell death in Parkinson’s disease. Lancet 2:639–640

    Article  CAS  PubMed  Google Scholar 

  • Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet 2:1219–1220

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, DeMaeyer L (1963), Relaxation methods, techniques of organic chemistry—investigation of rates and mechanism of reactions, part II, S. L. Friess, E. S. Lewis and A. Weissberger

  • Guerreiro S, Ponceau A, Toulorge D, Martin E, Alvarez-Fischer D, Hirsch EC, Michel PP (2009) Protection of midbrain dopaminergic neurons by the end-product of purine metabolism uric acid: potentiation by low-level depolarization. J Neurochem 109:1118–1128

    Article  CAS  PubMed  Google Scholar 

  • Harrington JM, Chittamuru S, Dhungana S, Jacobs HK, Gopalan AS, Crumbliss AL (2010) Synthesis and iron sequestration equilibria of novel exocyclic 3-hydroxy-2-pyridinone donor group siderophore mimics. Inorg Chem 49:8208–8221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Hider RC, Kong X (2013) Iron: effect of overload and deficiency. Met Ions Life Sci 13:229–294

    Article  PubMed  Google Scholar 

  • Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56:446–451

    Article  CAS  PubMed  Google Scholar 

  • Huo C, Yang H, Cui QC, Dou QP, Chan TH (2010) Proteasome inhibition in human breast cancer cells with high catechol–O–methyltransferase activity by green tea polyphenol EGCG analogs. Bioorg Med Chem 18:1252–1258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ji C, Miller PA, Miller MJ (2012) Iron transport-mediated drug delivery: practical syntheses and in vitro antibacterial studies of tris-catecholate siderophore-aminopenicillin conjugates reveals selectively potent antipseudomonal activity. J Am Chem Soc 134:9898–9901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiss T, Farkas E (1998) Metal-binding ability of desferrioxamine B. J Incl Phenom Mol Recognit Chem 32:385–403

    Article  CAS  Google Scholar 

  • Koppenol WH (2001) The Haber–Weiss cycle—70 years later. Redox Rep 6:229–234

    Article  CAS  PubMed  Google Scholar 

  • Korovitch A, Mulon JB, Souchon V, Lion C, Valeur B, Leray I, Ha-Duong NT, El Hage Chahine JM (2009) Kinetics, thermodynamics, and modeling of complex formation between calix[4]biscrowns and cesium. J Phys Chem B 113:14247–14256

    Article  CAS  PubMed  Google Scholar 

  • Korovitch A, Mulon JB, Souchon V, Leray I, Valeur B, Mallinger A, Nadal B, Le Gall T, Lion C, Ha-Duong NT, El Hage Chahine JM (2010) Norbadione a: kinetics and thermodynamics of cesium uptake in aqueous and alcoholic media. J Phys Chem B 114:12655–12665

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zhou T, Kong X, Hider RC (2012) Chelating agents for the treatment of systemic iron overload. Curr Med Chem 19:2816–2827

    Article  CAS  PubMed  Google Scholar 

  • Martell AE (1989) Complexation of labile metal ions and effect on toxicity. Biol Trace Elem Res 21:295–303

    Article  CAS  PubMed  Google Scholar 

  • Mena NP, Garcia-Beltran O, Lourido F, Urrutia PJ, Mena R, Castro-Castillo V, Cassels BK, Nunez MT (2015) The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Biochem Biophys Res Commun 463:787–792

    Article  CAS  PubMed  Google Scholar 

  • Miller WH, Seefeld MA, Rouse MB (2006) Naphthalene, quinoline, quinoxaline and naphthyridine derivatives as antibacterial agents and their preparation, pharmaceutical compositions, and use for treatment of bacterial infections. PCT International Applications WO 2006020561 A2, 23 Feb 2006

  • Munch G, Luth HJ, Wong A, Arendt T, Hirsch E, Ravid R, Riederer P (2000) Crosslinking of alpha-synuclein by advanced glycation endproducts–an early pathophysiological step in Lewy body formation? J Chem Neuroanat 20:253–257

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (1996) Guide for the Care and Use of Laboratory Animals, 7th ed. National Academy Press, Washington, DC

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Patel RV, Park SW (2013) An evolving role of piperazine moieties in drug design and discovery. Mini Rev Med Chem 13:1579–1601

    CAS  PubMed  Google Scholar 

  • Rousseau E, Michel PP, Hirsch EC (2013) The iron-binding protein lactoferrin protects vulnerable dopamine neurons from degeneration by preserving mitochondrial calcium homeostasis. Mol Pharmacol 84:888–898

    Article  CAS  PubMed  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2012) Microbial siderophores: a mini review. J Basic Microbiol 53(4):303–317

    Article  PubMed  Google Scholar 

  • Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Nunez MT, Garrick MD, Raisman-Vozari R, Hirsch EC (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A 105:18578–18583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schalk IJ, Mislin GL, Brillet K (2012) Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. Curr Top Membr 69:37–66

    Article  PubMed  Google Scholar 

  • Schapira A, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med. 16:653–661

    Article  PubMed  Google Scholar 

  • Schapira A, Tolosa E (2010) Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol 6:309–317

    Article  CAS  PubMed  Google Scholar 

  • Schweigert N, Hunziker RW, Escher BI, Eggen RI (2001) Acute toxicity of (chloro-)catechols and (chloro-)catechol-copper combinations in Escherichia coli corresponds to their membrane toxicity in vitro. Environ Toxicol Chem 20:239–247

    CAS  PubMed  Google Scholar 

  • Sharma SK, Miller MJ, Payne SM (1989) Spermexatin and spermexatol: new synthetic spermidine-based siderophore analogues. J Med Chem 32:357–367

    Article  CAS  PubMed  Google Scholar 

  • Sindi K, El Hage Chahine JM (2008) Kinetics and thermodynamics of complex formation with iron of a new series of dicatecholspermidine siderophore-like ligands. J Inorg Biochem 102:636–646

    Article  CAS  PubMed  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205

    Article  CAS  PubMed  Google Scholar 

  • Sozio P, Cerasa LS, Abbadessa A, Di Stefano A (2012) Designing prodrugs for the treatment of Parkinson’s disease. Expert Opin Drug Discov 7:385–406

    Article  CAS  PubMed  Google Scholar 

  • Tilbrook GS, Hider RC (1998) Iron chelators for clinical use. Met Ions Biol Syst 35:691–730

    CAS  PubMed  Google Scholar 

  • Troadec JD, Marien M, Darios F, Hartmann A, Ruberg M, Colpaert F, Michel PP (2001) Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. J Neurochem 79:200–210

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. Q., Wang, M. Y., Fu, X. R., Peng, Y., Gao, G. F., Fan, Y. M., Duan, X. L., Zhao, B. L., Chang, Y. Z. and Shi, Z. H., (2015), Neuroprotective effects of ginkgetin against neuroinjury in Parkinson’s disease model induced by MPTP via chelating iron, Free Radic Res; 1-12

  • Weinreb O, Mandel S, Youdim MB, Amit T (2013) Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radic Biol Med 62:52–64

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 30:691–696

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB, Fridkin M, Zheng H (2004) Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson’s disease and other neurodegenerative diseases. J Neural Transm 111:1455–1471

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Ma Y, Kong X, Hider RC (2012) Design of iron chelators with therapeutic application. Dalton Trans 41:6371–6389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Ph.D. Grant from the University Paris Diderot (S. Abdelsayed). The National Center for Scientific Research and the University Paris Diderot are thanked for financial support. The research leading to these results received funding from the program “Investissements d’avenir” ANR-10-IAIHU-06.The authors also thank Chang-Zhi Dong for his help with HPLC experiments, John S. Lomas for carefully reading the manuscript, and the Small Molecule Mass Spectrometry platform of IMAGIF (Centre de Recherche de Gif—www.imagif.cnrs.fr) for facilities and expertise.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. M. El Hage Chahine or N. Serradji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelsayed, S., Ha Duong, N.T., Bureau, C. et al. Piperazine derivatives as iron chelators: a potential application in neurobiology. Biometals 28, 1043–1061 (2015). https://doi.org/10.1007/s10534-015-9889-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9889-x

Keywords

Navigation