Skip to main content
Log in

Iron sucrose and ferric carboxymaltose: no correlation between physicochemical stability and biological activity

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Intravenous iron preparations, like iron sucrose (IS) and ferric carboxymaltose (FCM) differ in their physicochemical stability. Thus differences in storage and utilization can be expected and were investigated in a non-clinical study in liver parenchyma HepG2-cells and THP-1 macrophages as models for toxicological and pharmacological target cells. HepG2-cells incorporated significant amounts of IS, elevated the labile iron pool (LIP) and ferritin and stimulated iron release. HepG2-cells had lower basal cellular iron and ferritin content than THP-1 macrophages, which showed only marginal accumulation of IS and FCM. However, FCM increased the LIP up to twofold and significantly elevated ferritin within 24 h in HepG2-cells. IS and FCM were non-toxic for HepG2-cells and THP-1 macrophages were more sensitive to FCM compared to IS at all concentrations tested. In a cell-free environment redox-active iron was higher with IS than FCM. Biostability testing via assessment of direct transfer to serum transferrin did not reflect the chemical stability of the complexes (i.e., FCM > IS). Effect of vitamin C on mobilisation to transferrin was an increase with IS and interestingly a decrease with FCM. In conclusion, FCM has low bioavailability for liver parenchyma cells, therefore liver iron deposition is unlikely. Ascorbic acid reduces transferrin-chelatable iron from ferric carboxymaltose, thus effects on hepcidin expression should be investigated in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abelson J, Simon M, Deutscher M (1990) Methods in Enzymology: Guide to protein purification. Academic Press, Inc., San Diego

    Google Scholar 

  • Attallah N, Osman-Malik Y, Frinak S, Besarab A (2006) Effect of intravenous ascorbic acid in hemodialysis patients with EPO-hyporesponsive anemia and hyperferritinemia. Am J Kidney Dis 47:644–654. doi:10.1053/j.ajkd.2005.12.025

    Article  CAS  PubMed  Google Scholar 

  • Auerbach M, Goodnough LT, Picard D, Maniatis A (2008) The role of intravenous iron in anemia management and transfusion avoidance. Transfusion (Paris) 48:988–1000. doi:10.1111/j.1537-2995.2007.01633.x

    CAS  Google Scholar 

  • Bailie GR, Mason NA, Valaoras TG (2010) Safety and tolerability of intravenous ferric carboxymaltose in patients with iron deficiency anemia. Hemodial Int. Int Symp Home Hemodial 14:47–54. doi:10.1111/j.1542-4758.2009.00409.x

    Article  Google Scholar 

  • Baldwin DA (1980) The kinetics of iron release from human transferrin by EDTA. Effect of salts and detergents. Biochim Biophys Acta 623:183–198

    Article  CAS  PubMed  Google Scholar 

  • Breuer W, Cabantchik ZI (2001) A fluorescence-based one-step assay for serum non-transferrin-bound iron. Anal Biochem 299:194–202. doi:10.1006/abio.2001.5378

    Article  CAS  PubMed  Google Scholar 

  • Breuer W, Epsztejn S, Cabantchik ZI (1995) Iron acquired from Transferrin by K562 cells is delivered into a cytoplasmic pool of chelatable iron(II). J Biol Chem 270:24209–24215. doi:10.1074/jbc.270.41.24209

    Article  CAS  PubMed  Google Scholar 

  • Breuer W, Greenberg E, Cabantchik ZI (1997) Newly delivered transferrin iron and oxidative cell injury. FEBS Lett 403:213–219

    Article  CAS  PubMed  Google Scholar 

  • Canavese C, Bergamo D, Ciccone G, Burdese M, Maddalena E, Barbieri S, Thea A, Fop F (2004a) Low-dose continuous iron therapy leads to a positive iron balance and decreased serum transferrin levels in chronic haemodialysis patients. Nephrol Dial Transplant 19:1564–1570. doi:10.1093/ndt/gfh136

    Article  CAS  PubMed  Google Scholar 

  • Canavese C, Bergamo D, Ciccone G, Longo F, Fop F, Thea A, Martina G, Piga A (2004b) Validation of serum ferritin values by magnetic susceptometry in predicting iron overload in dialysis patients. Kidney Int 65:1091–1098. doi:10.1111/j.1523-1755.2004.00480.x

    Article  CAS  PubMed  Google Scholar 

  • Crichton RR, Danielson BG, Geisser P (2006) Iron therapy with special emphasis on intravenous administration. UNI-MED, Bremen

    Google Scholar 

  • Danielson BG (2004) Structure, chemistry, and pharmacokinetics of intravenous iron agents. J Am Soc Nephrol 15(Suppl 2):S93–S98. doi:10.1097/01.ASN.0000143814.49713.C5

    PubMed  Google Scholar 

  • Danielson BG, Salmonson T, Derendorf H, Geisser P (1996) Pharmacokinetics of iron(III)-hydroxide sucrose complex after a single intravenous dose in healthy volunteers. Arzneimittelforschung 46:615–621

    CAS  PubMed  Google Scholar 

  • Davy P, Bingham D, Walters G, Whicher JT (1982) Estimation of the saturation of serum transferrin by an electrophoretic technique. Ann Clin Biochem 19:57–59. doi:10.1177/000456328201900112

    Article  CAS  PubMed  Google Scholar 

  • Einerson B, Nathorn C, Kitiyakara C, Sirada M, Thamlikitkul V (2011) The efficacy of ascorbic acid in suboptimal responsive anemic hemodialysis patients receiving erythropoietin: a meta-analysis. J Med Assoc Thail Chotmaihet Thangphaet 94(Suppl 1):S134–S146

    Google Scholar 

  • Esposito BP, Breuer W, Sirankapracha P, Pootrakul P, Hershko C, Cabantchik ZI (2003) Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood 102:2670–2677. doi:10.1182/blood-2003-03-0807

    Article  CAS  PubMed  Google Scholar 

  • Feldman HI, Joffe M, Robinson B, Knauss J, Cizman B, Guo W, Franklin-Becker E, Faich G (2004) Administration of parenteral iron and mortality among hemodialysis patients. J Am Soc Nephrol 15:1623–1632

    Article  CAS  PubMed  Google Scholar 

  • ferinject_smpc_2012.pdf [WWW Document], n.d. URL http://server-p007.hostpoint.ch/%7Eferinjec/ferinject.com/wp-content/uploads/2011/12/ferinject_smpc_2012.pdf (accessed 26 Aug 2013)

  • Ferrari P, Kulkarni H, Dheda S, Betti S, Harrison C, St Pierre TG, Olynyk JK (2011) Serum iron markers are inadequate for guiding iron repletion in chronic kidney disease. Clin J Am Soc Nephrol 6:77–83. doi:10.2215/CJN.04190510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fish WW (1988) Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Methods Enzymol 158:357–364

    Article  CAS  PubMed  Google Scholar 

  • Gaweda AE, Ginzburg YZ, Chait Y, Germain MJ, Aronoff GR, Rachmilewitz E (2014) Iron dosing in kidney disease: inconsistency of evidence and clinical practice. Nephrol Dial Transplant doi:10.1093/ndt/gfu104

  • Geisser P, Baer M, Schaub E (1992) Structure/histotoxicity relationship of parenteral iron preparations. Arzneimittelforschung 42:1439–1452

    CAS  PubMed  Google Scholar 

  • Ghoti H, Rachmilewitz EA, Simon-Lopez R, Gaber R, Katzir Z, Konen E, Kushnir T, Girelli D, Campostrini N, Fibach E, Goitein O (2012) Evidence for tissue iron overload in long-term hemodialysis patients and the impact of withdrawing parenteral iron. Eur J Haematol 89:87–93. doi:10.1111/j.1600-0609.2012.01783.x

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1999) Free radicals in biology and medicine, 3rd edn. Oxford Science Publications, New York

    Google Scholar 

  • Hemmaplardh D, Morgan EH (1974) The mechanism of iron exchange between synthetic iron chelators and rabbit reticulocytes. Biochim Biophys Acta 373:84–99

    Article  CAS  PubMed  Google Scholar 

  • Hoen B, Paul-Dauphin A, Hestin D, Kessler M (1998) EPIBACDIAL: a multicenter prospective study of risk factors for bacteremia in chronic hemodialysis patients. J Am Soc Nephrol 9:869–876

    CAS  PubMed  Google Scholar 

  • Jahn MR, Andreasen HB, Fütterer S, Nawroth T, Schünemann V, Kolb U, Hofmeister W, Muñoz M, Bock K, Meldal M, Langguth P (2011) A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer), a new intravenous iron preparation and its clinical implications. Eur J Pharm Biopharm 78:480–491. doi:10.1016/j.ejpb.2011.03.016

    Article  CAS  PubMed  Google Scholar 

  • Jalalzadeh M, Shekari E, Mirzamohammadi F, Ghadiani MH (2012) Effect of short-term intravenous ascorbic acid on reducing ferritin in hemodialysis patients. Indian J Nephrol 22:168–173. doi:10.4103/0971-4065.86407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalantar-Zadeh K, Regidor DL, McAllister CJ, Michael B, Warnock DG (2005) Time-dependent associations between iron and mortality in hemodialysis patients. J Am Soc Nephrol 16:3070–3080. doi:10.1681/ASN.2005040423

    Article  CAS  PubMed  Google Scholar 

  • Kulnigg S, Stoinov S, Simanenkov V, Dudar LV, Karnafel W, Garcia LC, Sambuelli AM, D’Haens G, Gasche C (2008) A novel intravenous iron formulation for treatment of anemia in inflammatory bowel disease: the ferric carboxymaltose (FERINJECT) randomized controlled trial. Am J Gastroenterol 103:1182–1192. doi:10.1111/j.1572-0241.2007.01744.x

    Article  CAS  PubMed  Google Scholar 

  • Kuo K-L, Hung S-C, Wei Y-H, Tarng D-C (2008) Intravenous iron exacerbates oxidative DNA damage in peripheral blood lymphocytes in chronic hemodialysis patients. J Am Soc Nephrol 19:1817–1826. doi:10.1681/ASN.2007101084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim CS, Vaziri ND (2004) The effects of iron dextran on the oxidative stress in cardiovascular tissues of rats with chronic renal failure. Kidney Int 65:1802–1809. doi:10.1111/j.1523-1755.2004.00580.x

    Article  CAS  PubMed  Google Scholar 

  • Lipiński P, Drapier J-C, Oliveira L, Retmańska H, Sochanowicz B, Kruszewski M (2000) Intracellular iron status as a hallmark of mammalian cell susceptibility to oxidative stress: a study of L5178Y mouse lymphoma cell lines differentially sensitive to H2O2. Blood 95:2960–2966

    PubMed  Google Scholar 

  • Makey DG, Seal US (1976) The detection of four molecular forms of human transferrin during the iron binding process. Biochim Biophys Acta 453:250–256

    Article  CAS  PubMed  Google Scholar 

  • McCord JM (1998) Iron, free radicals, and oxidative injury. Semin Hematol 35:5–12

    CAS  PubMed  Google Scholar 

  • Muñoz M, Breymann C, García-Erce JA, Gómez-Ramírez S, Comin J, Bisbe E (2008) Efficacy and safety of intravenous iron therapy as an alternative/adjunct to allogeneic blood transfusion. Vox Sang 94:172–183. doi:10.1111/j.1423-0410.2007.01014.x

    Article  PubMed  Google Scholar 

  • Parkkinen J, von Bonsdorff L, Peltonen S, Grönhagen-Riska C, Rosenlöf K (2000) Catalytically active iron and bacterial growth in serum of haemodialysis patients after i.v. iron-saccharate administration. Nephrol Dial Transplant 15:1827–1834

    Article  CAS  PubMed  Google Scholar 

  • Picard V, Renaudie F, Porcher C, Hentze MW, Grandchamp B, Beaumont C (1996) Overexpression of the ferritin H subunit in cultured erythroid cells changes the intracellular iron distribution. Blood 87:2057–2064

    CAS  PubMed  Google Scholar 

  • Pierre JL, Fontecave M, Crichton RR (2002) Chemistry for an essential biological process: the reduction of ferric iron. Biometals 15:341–346. doi:10.1023/A:1020259021641

    Article  CAS  PubMed  Google Scholar 

  • Pollack S, Vanderhoff G, Lasky F (1977) Iron removal from transferrin. An experimental study. Biochim Biophys Acta 497:481–487

    Article  CAS  PubMed  Google Scholar 

  • Praschberger M, Cornelius C, Schitegg M, Goldenberg H, Scheiber-Mojdehkar B, Sturm B (2013) Bioavailability and stability of intravenous iron sucrose originator versus generic iron sucrose AZAD. Pharm Dev Technol doi:10.3109/10837450.2013.852575

  • Rostoker G, Griuncelli M, Loridon C, Couprie R, Benmaadi A, Bounhiol C, Roy M, Machado G, Janklewicz P, Drahi G, Dahan H, Cohen Y (2012) Hemodialysis-associated hemosiderosis in the era of erythropoiesis-stimulating agents: a MRI study. Am J Med 125(991–999):e1. doi:10.1016/j.amjmed.2012.01.015

    PubMed  Google Scholar 

  • Rothman RJ, Serroni A, Farber JL (1992) Cellular pool of transient ferric iron, chelatable by deferoxamine and distinct from ferritin, that is involved in oxidative cell injury. Mol Pharmacol 42:703–710

    CAS  PubMed  Google Scholar 

  • Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414. doi:10.1038/nchembio807

    Article  CAS  PubMed  Google Scholar 

  • Schaller G, Scheiber-Mojdehkar B, Wolzt M, Puttinger H, Mittermayer F, Hörl WH, Födinger M, Sunder-Plassmann G, Vychytil A (2005) Intravenous iron increases labile serum iron but does not impair forearm blood flow reactivity in dialysis patients. Kidney Int 68:2814–2822. doi:10.1111/j.1523-1755.2005.00754.x

    Article  CAS  PubMed  Google Scholar 

  • Scheiber-Mojdehkar B, Sturm B, Plank L, Kryzer I, Goldenberg H (2003) Influence of parenteral iron preparations on non-transferrin bound iron uptake, the iron regulatory protein and the expression of ferritin and the divalent metal transporter DMT-1 in HepG2 human hepatoma cells. Biochem Pharmacol 65:1973–1978. doi:10.1016/S0006-2952(03)00181-3

    Article  CAS  PubMed  Google Scholar 

  • Sezer S, Ozdemir FN, Yakupoglu U, Arat Z, Turan M, Haberal M (2002) Intravenous ascorbic acid administration for erythropoietin-hyporesponsive anemia in iron loaded hemodialysis patients. Artif Organs 26:366–370

    Article  CAS  PubMed  Google Scholar 

  • Sonnweber T, Theurl I, Seifert M, Schroll A, Eder S, Mayer G, Weiss G (2011) Impact of iron treatment on immune effector function and cellular iron status of circulating monocytes in dialysis patients. Nephrol Dial Transplant 26:977–987. doi:10.1093/ndt/gfq483

    Article  CAS  PubMed  Google Scholar 

  • Stäubli A, Boelsterli UA (1998) The labile iron pool in hepatocytes: prooxidant-induced increase in free iron precedes oxidative cell injury. Am J Physiol–Gastrointest Liver Physiol 274:G1031–G1037

    Google Scholar 

  • Sturm B, Goldenberg H, Scheiber-Mojdehkar B (2003) Transient increase of the labile iron pool in HepG2 cells by intravenous iron preparations. Eur J Biochem 270:3731–3738. doi:10.1046/j.1432-1033.2003.03759.x

    Article  CAS  PubMed  Google Scholar 

  • Sturm B, Laggner H, Ternes N, Goldenberg H, Scheiber-Mojdehkar B (2005) Intravenous iron preparations and ascorbic acid: effects on chelatable and bioavailable iron. Kidney Int 67:1161–1170. doi:10.1111/j.1523-1755.2005.00183.x

    Article  CAS  PubMed  Google Scholar 

  • Sturm B, Steinkellner H, Ternes N, Goldenberg H, Scheiber-Mojdehkar B (2010) In vitro study on the effects of iron sucrose, ferric gluconate and iron dextran on redox-active iron and oxidative stress. Arzneimittelforschung 60:459–465. doi:10.1055/s-0031-1296312

    CAS  PubMed  Google Scholar 

  • Tarng D-C (2007) Novel aspects of vitamin C in epoetin response. J Chin Med Assoc 70:357–360. doi:10.1016/S1726-4901(08)70020-0

    Article  CAS  PubMed  Google Scholar 

  • Toblli JE, Cao G, Oliveri L, Angerosa M (2012) Comparison of oxidative stress and inflammation induced by different intravenous iron sucrose similar preparations in a rat model. Inflamm Allergy Drug Targets 11:66–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, Tada K (1982) Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 42:1530–1536

    CAS  PubMed  Google Scholar 

  • Van Wyck DB, Martens MG, Seid MH, Baker JB, Mangione A (2007) Intravenous ferric carboxymaltose compared with oral iron in the treatment of postpartum anemia: a randomized controlled trial. Obstet Gynecol 110:267–278. doi:10.1097/01.AOG.0000275286.03283.18

    Article  PubMed  Google Scholar 

  • Venofer–Iron sucrose injection, USP [WWW Document], n.d. URL http://www.venofer.com/HCP/Index.aspx (accessed 26 Aug 2013)

  • Wang S, Geraci G, Kuhlmann MK, Levin NW, Handelman GJ (2008) Chemical reactions of vitamin C with intravenous-iron formulations. Nephrol Dial Transplant 23:120–125. doi:10.1093/ndt/gfm557

    Article  PubMed  Google Scholar 

  • Young SP, Roberts S, Bomford A (1985) Intracellular processing of transferrin and iron by isolated rat hepatocytes. Biochem J 232:819–823

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Bernhard Gmeiner who supplied us with human serum. Ms. Haider’s work for this paper was part of her master thesis at the University of Vienna, Austria, which was performed at the Medical University of Vienna, Austria. This work was supported by the Austrian Research Promotion Agency (FFG 832528).

Conflict of interest

All the authors declared no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Scheiber-Mojdehkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praschberger, M., Haider, K., Cornelius, C. et al. Iron sucrose and ferric carboxymaltose: no correlation between physicochemical stability and biological activity. Biometals 28, 35–50 (2015). https://doi.org/10.1007/s10534-014-9801-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9801-0

Keywords

Navigation