Skip to main content
Log in

Structural mechanisms of heavy-metal extrusion by the Cus efflux system

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Resistance-nodulation-cell division (RND) superfamily efflux systems are responsible for the active transport of toxic compounds from the Gram-negative bacterial cell. These pumps typically assemble as tripartite complexes, spanning the inner and outer membranes of the cell envelope. In Escherichia coli, the CusC(F)BA complex, which exports copper(I) and silver(I) and mediates resistance to these two metal ions, is the only known RND transporter with a specificity for heavy metals. We have determined the crystal structures of both the inner membrane pump CusA and membrane fusion protein CusB, as well as the adaptor–transporter CusBA complex formed by these two efflux proteins. In addition, the crystal structures of the outer membrane channel CusC and the periplasmic metallochaperone CusF have been resolved. Based on these structures, the entire assembled model of the tripartite efflux system has been developed, and this efflux complex should be in the form of CusC3–CusB6–CusA3. It has been shown that CusA utilizes methionine clusters to bind and export Cu(I) and Ag(I). This pump is likely to undergo a conformational change, and utilize a relay network of methionine clusters as well as conserved charged residues to extrude the metal ions from the bacterial cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aires JR, Nikaido H (2005) Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol 187:1923–1929

    Article  PubMed  CAS  Google Scholar 

  • Bagai I, Liu W, Rensing C, Blackburn NJ, McEvoy MM (2007) Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system. J Biol Chem 282:35695–35702

    Article  PubMed  CAS  Google Scholar 

  • Bagai I, Rensing C, Blackburn NJ, McEvoy MM (2008) Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Biochemistry 47:11408–11414

    Article  PubMed  CAS  Google Scholar 

  • Baranova N, Nikaido H (2002) The BaeSR two-component regulatory system activates transcription of yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol 184:4168–4176

    Article  PubMed  CAS  Google Scholar 

  • Bohnert JA, Schuster S, Fähnrich E, Trittler R, Kern WV (2007) Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). J Antimicrob Chemother 6:1216–1222

    Article  Google Scholar 

  • Chakravorty DK, Wang B, Ucisik MN, Merz KM Jr (2011) Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF. J Am Chem Soc 133:19330–19333

    Article  PubMed  CAS  Google Scholar 

  • Das D, Xu QS, Lee JY, Ankoudinova I, Huang C, Lou Y, Degiovanni A, Kim R, Kim SH (2007) Crystal structure of the multidrug efflux transporter AcrB at 3.1 Å resolution reveals the N-terminal region with conserved amino acids. J Struct Biol 158:494–502

    Article  PubMed  CAS  Google Scholar 

  • Franke S, Grass G, Nies DH (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147:965–972

    PubMed  CAS  Google Scholar 

  • Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812

    Article  PubMed  Google Scholar 

  • Kim EH, Nies DH, McEvoy MM, Rensing C (2011) Switch or funnel: how RND-type transport systems control periplasmic metal homeostasis. J Bacteriol 193:2381–2387

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Hirakawa H, Hirata T, Nishino K, Yamaguchi A (2001) Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J Bacteriol 16:5693–5703

    Google Scholar 

  • Kulathila R, Kulathila R, Indic M, van den Berg B (2011) Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump. PLoS ONE 6:e15610

    Article  PubMed  CAS  Google Scholar 

  • Lau SY, Zgurskaya HI (2005) Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF-TolC. J Bacteriol 187:7815–7825

    Article  PubMed  CAS  Google Scholar 

  • Loftin IR, Franke S, Roberts SA, Weischsel A, Héroux A, Montfort WR, Rensing C, McEvoy MM (2005) A novel copper-binding fold for the periplasmic copper resistance protein CusF. Biochemistry 44:10533–10540

    Article  PubMed  CAS  Google Scholar 

  • Loftin IR, Franke S, Blackburn NJ, McEvoy MM (2007) Unusual Cu(I)/Ag(I) coordination of Escherichia coli CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy. Protein Sci 16:2287–2293

    Article  PubMed  CAS  Google Scholar 

  • Long F, Su CC, Zimmermann MT, Boyken SE, Rajashankar KR, Jernigan RL, Yu EW (2010) Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature 467:484–488

    Article  PubMed  CAS  Google Scholar 

  • Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst E (1993) Molecular cloning of acrA and acrE genes of Escherichia coli. J Bacteriol 175:6299–6313

    PubMed  CAS  Google Scholar 

  • Mealman TD, Bagai I, Singh P, Goodlett DR, Rensing C, Zhou H, Wysocki VH, McEvoy MM (2011) Interactions between CusF and CusB identified by NMR spectroscopy and chemical cross-linking coupled to mass spectrometry. Biochemistry 50:2559–2566

    Google Scholar 

  • Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179

    Article  PubMed  CAS  Google Scholar 

  • Nagakubo S, Nishino K, Hirata T, Yamaguchi A (2002) The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 184:4161–4167

    Article  PubMed  CAS  Google Scholar 

  • Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A (2011) Structures of the multidrug exporter AcrB reveal aproximal multisite drug-binding pocket. Nature 480:565–569

    PubMed  CAS  Google Scholar 

  • Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812

    Article  PubMed  CAS  Google Scholar 

  • Phan G, Benabdelhak H, Lascombe MB, Benas P, Rety S, Picard M, Ducruix A, Etchebest C, Broutin I (2010) Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel. Structure 18:507–517

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg EY, Ma D, Nikaido H (2000) AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol 182:1754–1756

    Article  PubMed  CAS  Google Scholar 

  • Seeger MA, Schiefner A, Eicher T, Verrey F, Dietrichs K, Pos KM (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313:1295–1298

    Article  PubMed  CAS  Google Scholar 

  • Sennhauser G, Amstutz P, Briand C, Storchengegger O, Grütter MG (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5:e7

    Article  PubMed  Google Scholar 

  • Su CC, Li M, Gu R, Takatsuka Y, McDermott G, Nikaido H, Yu EW (2006) Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. J Bacteriol 188:7290–7296

    Article  PubMed  CAS  Google Scholar 

  • Su CC, Yang F, Long F, Reyon D, Routh MD, Kuo DW, Mokhtari AK, Van Ornam JD, Rabe KL, Hoy JA, Lee YJ, Rajashankar KR, Yu EW (2009) Crystal structure of the membrane fusion protein CusB from Escherichia coli. J Mol Biol 393:342–355

    Article  PubMed  CAS  Google Scholar 

  • Su CC, Long F, Zimmermann MT, Rajashankar KR, Jernigan RL, Yu EW (2011) Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. Nature 470:558–562

    Article  PubMed  CAS  Google Scholar 

  • Su CC, Long F, Lei HT, Bolla JR, Do SV, Rajashankar KR, Yu EW (2012) Charged amino acids (R83, E567, D617, E625, R669, and K678) of CusA are required for metal ion transport in the Cus efflux system. J Mol Biol 422:429–441

    Article  PubMed  CAS  Google Scholar 

  • Törnroth-Horsefield S, Gourdon P, Horsefield R, Brive L, Yamamoto N, Mori H, Snijder A, Neutze R (2007) Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist. Structure 15:1663–1673

    Article  PubMed  Google Scholar 

  • Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH Jr (1999) The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development protein. J Mol Microbiol Biotechnol 1:107–125

    PubMed  CAS  Google Scholar 

  • Vaccaro L, Scott KA, Sansom MSP (2008) Gating at both ends and breathing in the middle: conformational dynamics of TolC. Biophys J 95:5681–5691

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Davis AV, Balakrishnan G, Stasser JP, Staehlin BM, Focia P, Spiro TG, Penner-Hahn JE, O′Halloran TV (2008) Cu(I) recognition via cation-π and methionine interactions in CusF. Nat Chem Biol 4:107–109

    Article  PubMed  CAS  Google Scholar 

  • Yu EW, McDermott G, Zgruskaya HI, Nikaido H, Koshland DE Jr (2003) Structural basis of multiple drug binding capacity of the AcrB multidrug efflux pump. Science 300:976–980

    Article  PubMed  CAS  Google Scholar 

  • Yu EW, Aires JR, McDermott G, Nikaido H (2005) A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J Bacteriol 187:6804–6815

    Article  PubMed  CAS  Google Scholar 

  • Zgurskaya H, Nikaido H (1999) Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc Natl Acad Sci USA 96:7190–7195

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by an NIH Grant R01GM086431 (E.W.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward W. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delmar, J.A., Su, CC. & Yu, E.W. Structural mechanisms of heavy-metal extrusion by the Cus efflux system. Biometals 26, 593–607 (2013). https://doi.org/10.1007/s10534-013-9628-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9628-0

Keywords

Navigation