Skip to main content
Log in

Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The fabrication of reliable, green chemistry processes for nanomaterial synthesis is an important aspect of nanotechnology. The biosynthesis of single-pot room-temperature reduction of aqueous chloroaurate ions by Streptomyces hygroscopicus cells has been reported to facilitate the development of an industrially viable greener methodology for the synthesis of technologically important gold nanoparticles (AuNPs). Multidimensional AuNPs are generated via the manipulation of key growth parameters, including solution pH and reaction time. The synthesized nanostructures are characterized by UV/Vis and energy dispersive X-ray analysis studies. Particle morphology is characterized by HRTEM, FE-SEM and BioAFM. Additionally, we have demonstrated the electrochemical and antibacterial properties of AuNPs via cyclic voltammetry analysis and a minimal inhibitory concentration assay. Owing to the drawbacks of chemical synthesis, a biological synthesis method has been developed to generate biocompatible, inexpensive and eco-friendly size-controlled nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  PubMed  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Bethell D, Schriffrin DJ (1996) Nanotechnology and nucleotides. Nature 382:581

    Article  PubMed  CAS  Google Scholar 

  • Brown S, Sarikaya M, Johnson E (2000) A genetic analysis of crystal growth. J Mol Biol 299:725–735

    Article  PubMed  CAS  Google Scholar 

  • Brus LJ (1994) Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon. Phys Chem 98:3575–3581

    Article  CAS  Google Scholar 

  • Chun YJ, Shimada T, Waterman MR, Guengerich FP (2006) Understanding electron transport systems of Streptomyces cytochrome P450. Biochem Soc Trans 34:1183–1185

    Article  PubMed  CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Single nanowire electrically driven lasers. Nature 421:241–245

    Article  PubMed  CAS  Google Scholar 

  • Grubbs RB (2007) Solvent-tuned structures. Nat Mater 6:553–555

    Article  PubMed  CAS  Google Scholar 

  • Heath JR, Kuekes PJ, Snider GS, Williams SR (1998) A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280:1716–1721

    Article  CAS  Google Scholar 

  • Herman A, Addadi L, Weiner S (1988) Interactions of sea-urchin skeleton macromolecules with growing calcite crystals a study of intracrystalline proteins. Nature 331:546–548

    Article  Google Scholar 

  • Hosea M, Greene B, McPherson R, Henzl M, Alexander MD, Darnall DW (1986) Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg Chim Acta 123:161–165

    Article  CAS  Google Scholar 

  • Iosin M, Toderas F, Baldeck P, Astilean SJ (2008) In vitro biosynthesis of gold anotriangles for Surface-Enhanced Raman spectroscopy. Optoelectron Adv Mater 10:2285–2288

    CAS  Google Scholar 

  • Johnson JC, Yan HQ, Schaller RD, Haber LH, Saykally RJ, Yang PD (2001) Single nanowire lasers. J Phys Chem B 105:11387–11390

    Article  CAS  Google Scholar 

  • Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductive nanoparticles. Electroanalysis 16:19–44

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    Article  PubMed  CAS  Google Scholar 

  • Komeili A, Vali H, Beveridge TJ, Newman DK (2004) Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci USA 101:3839–3844

    Article  PubMed  CAS  Google Scholar 

  • Kroger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Article  PubMed  CAS  Google Scholar 

  • Labrenz M, Druschel GK, Ebert TT, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Sphalerite (ZnS) deposits forming in natural biofilms of sulfate reducing bacteria. Science 290:1744–1747

    Article  PubMed  CAS  Google Scholar 

  • Lang C, Schuler D, Faivre D (2007) Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol Biosci 7:144–151

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Hwang S, Lee H, Kwak J (2004) Bimetallic clusters by underpotential deposition on layered Au nanoparticle films. J Phys Chem B 108:5372–5379

    Article  CAS  Google Scholar 

  • Lovley DR, Stolz JF, Nord GL Jr, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Intl Edn Eng 40:3585–3588

    Article  CAS  Google Scholar 

  • Ouhdouch Y, Barakate M, Finance C (2001) Actinomycetes of Moroccan habitats: isolation and screening for antifungal activities. Eur J Soil Biol 37:69–74

    Article  Google Scholar 

  • Ragupathy D, Gopalan AI, Lee K-P (2010) Electrocatalytic oxidation and determination of ascorbic acid in the presence of dopamine at multiwalled carbon nanotube-silica network-gold nanoparticles based nanohybrid modified electrode. Sensor Actuat B: Chem 143:696–703

    Article  Google Scholar 

  • Sadhasivam S, Shanmugam P, Yun KS (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloid Surf B: Biointerfaces 81:358–362

    Article  CAS  Google Scholar 

  • Sastry M, Patil V, Sainkar SRJ (1998) Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. Phys Chem B 102:1404–1410

    Article  CAS  Google Scholar 

  • Schmid G (1998) Lifeng CF metal clusters and colloids. Adv Mater 10:515–526

    Article  CAS  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1:517–520

    Google Scholar 

  • Shaojun G, Erkang W (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192

    Article  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Tang ZY, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297:237–240

    Article  PubMed  CAS  Google Scholar 

  • Veerapandian M, Subbiah R, Lim G-S, Park S-H, Yun KS, Lee M-H (2011) Copper–glucosamine microcubes: synthesis, characterization and C-reactive protein detection. Langmuir 27:8934–8942

    Google Scholar 

  • Williams ST, Sharp ME, Holt JG (1989) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2492–2504

    Google Scholar 

  • Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometer probes for chemistry and biology. Nature 394:52–55

    Article  PubMed  CAS  Google Scholar 

  • Xiaoxiao H, Xu W, Kemin W, Bihua S, Luo H (2009) Methylene blue-encapsulated phosphonate-terminated silica nanoparticles for simultaneous in vivo imaging and photodynamic therapy. Biomaterials 30:5601–5609

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Kyungwon University research fund in 2011(2011-R295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyusik Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadhasivam, S., Shanmugam, P., Veerapandian, M. et al. Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. Biometals 25, 351–360 (2012). https://doi.org/10.1007/s10534-011-9506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9506-6

Keywords

Navigation