Skip to main content
Log in

Effect of dietary iron deficiency and overload on the expression of ZIP metal-ion transporters in rat liver

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The mammalian ZIP (Zrt-, Irt-like Protein) family of transmembrane transport proteins consists of 14 members that share considerable homology. ZIP proteins have been shown to mediate the cellular uptake of the essential trace elements zinc, iron, and manganese. The aim of the present study was to determine the effect of dietary iron deficiency and overload on the expression of all 14 ZIP transporters in the liver, the main site of iron storage. Weanling male rats (n = 6/group) were fed iron-deficient (FeD), iron-adequate (FeA), or iron-overloaded (FeO) diets in two independent feeding studies. In study 1, diets were based on the TestDiet 5755 formulation and contained iron at 9 ppm (FeD), 215 ppm (FeA), and 27,974 ppm (3% FeO). In study 2, diets were based on the AIN-93G formulation and contained iron at 9 ppm Fe (FeD), 50 ppm Fe (FeA), or 18916 ppm (2% FeO). After 3 weeks, the FeD diets depleted liver non-heme iron stores and induced anemia, whereas FeO diets resulted in hepatic iron overload. Quantitative RT-PCR revealed that ZIP5 mRNA levels were 3- and 8-fold higher in 2% FeO and 3% FeO livers, respectively, compared with FeA controls. In both studies, a consistent downregulation of ZIP6, ZIP7, and ZIP10 was also observed in FeO liver relative to FeA controls. Studies in H4IIE hepatoma cells further documented that iron loading affects the expression of these ZIP transporters. Overall, our data suggest that ZIP5, ZIP6, ZIP7, and ZIP10 are regulated by iron, indicating that they may play a role in hepatic iron/metal homeostasis during iron deficiency and overload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams PC, Bradley C, Frei JV (1991) Hepatic zinc in hemochromatosis. Clin Invest Med 14(1):16–20

    PubMed  CAS  Google Scholar 

  • Collins JF, Prohaska JR, Knutson MD (2010) Metabolic crossroads of iron and copper. Nutr Rev 68(3):133–147

    Article  PubMed  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14(6):1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Craven CM, Alexander J, Eldridge M, Kushner JP, Bernstein S, Kaplan J (1987) Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis. Proc Natl Acad Sci USA 84(10):3457–3461

    Article  PubMed  CAS  Google Scholar 

  • de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meerman GJ, ter Elst A (2007) Evidence based selection of housekeeping genes. PLoS One 2(9):e898

    Article  PubMed  Google Scholar 

  • Delvecchio M, Cavallo L (2010) Growth and endocrine function in thalassemia major in childhood and adolescence. J Endocrinol Invest 33(1):61–68

    PubMed  CAS  Google Scholar 

  • Dufner-Beattie J, Kuo YM, Gitschier J, Andrews GK (2004) The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem 279(47):49082–49090

    Article  PubMed  CAS  Google Scholar 

  • Eide DJ (2004) The SLC39 family of metal ion transporters. Pflugers Arch 447(5):796–800

    Article  PubMed  CAS  Google Scholar 

  • Farmaki K, Tzoumari I, Pappa C, Chouliaras G, Berdoukas V (2010) Normalisation of total body iron load with very intensive combined chelation reverses cardiac and endocrine complications of thalassaemia major. Br J Haematol 148(3):466–475

    Article  PubMed  Google Scholar 

  • Gao J, Zhao N, Knutson MD, Enns CA (2008) The hereditary hemochromatosis protein, HFE, inhibits iron uptake via down-regulation of Zip14 in HepG2 cells. J Biol Chem 283(31):21462–21468

    Article  PubMed  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488

    Article  PubMed  CAS  Google Scholar 

  • Hogstrand C, Kille P, Nicholson RI, Taylor KM (2009) Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 15(3):101–111

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Kirschke CP, Zhang Y, Yu YY (2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280(15):15456–15463

    Article  PubMed  CAS  Google Scholar 

  • Hudec M, Grigerova M, Walsh CH (2008) Secondary hypothyroidism in hereditary hemochromatosis: recovery after iron depletion. Thyroid 18(2):255–257

    Article  PubMed  CAS  Google Scholar 

  • Jacques I, Andrews NW, Huynh C (2010) Functional characterization of LIT1, the Leishmania amazonensis ferrous iron transporter. Mol Biochem Parasitol 170(1):28–36

    Article  PubMed  CAS  Google Scholar 

  • Jenkitkasemwong S, Broderius M, Nam H, Prohaska JR, Knutson MD (2010) Anemic copper-deficient rats, but not mice, display low hepcidin expression and high ferroportin levels. J Nutr 140(4):723–730

    Article  PubMed  CAS  Google Scholar 

  • Kaler P, Prasad R (2007) Molecular cloning and functional characterization of novel zinc transporter rZip10 (Slc39a10) involved in zinc uptake across rat renal brush-border membrane. Am J Physiol Renal Physiol 292(1):F217–F229

    Article  PubMed  CAS  Google Scholar 

  • Kautz L, Meynard D, Monnier A, Darnaud V, Bouvet R, Wang RH, Deng C, Vaulont S, Mosser J, Coppin H, Roth MP (2008) Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood 112(4):1503–1509

    Article  PubMed  CAS  Google Scholar 

  • Kim BE, Wang F, Dufner-Beattie J, Andrews GK, Eide DJ, Petris MJ (2004) Zn2+-stimulated endocytosis of the mZIP4 zinc transporter regulates its location at the plasma membrane. J Biol Chem 279(6):4523–4530

    Article  PubMed  CAS  Google Scholar 

  • Knutson MD, Vafa MR, Haile DJ, Wessling-Resnick M (2003) Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood 102(12):4191–4197

    Article  PubMed  CAS  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Kozul CD, Nomikos AP, Hampton TH, Warnke LA, Gosse JA, Davey JC, Thorpe JE, Jackson BP, Ihnat MA, Hamilton JW (2008) Laboratory diet profoundly alters gene expression and confounds genomic analysis in mouse liver and lung. Chem Biol Interact 173(2):129–140

    Article  PubMed  CAS  Google Scholar 

  • Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176

    Article  PubMed  Google Scholar 

  • Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci USA 102(19):6843–6848

    Article  PubMed  CAS  Google Scholar 

  • Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ (2006) Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA 103(37):13612–13617

    Article  PubMed  CAS  Google Scholar 

  • Lu JP, Hayashi K, Awai M (1989) Transferrin receptor expression in normal, iron-deficient and iron-over-loaded rats. Acta Pathol Jpn 39(12):759–764

    PubMed  CAS  Google Scholar 

  • Mackinnon M, Clayton C, Plummer J, Ahern M, Cmielewski P, Ilsley A, Hall P (1995) Iron overload facilitates hepatic fibrosis in the rat alcohol/low-dose carbon tetrachloride model. Hepatology 21(4):1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Manning DL, Daly RJ, Lord PG, Kelly KF, Green CD (1988) Effects of oestrogen on the expression of a 4.4 kb mRNA in the ZR-75-1 human breast cancer cell line. Mol Cell Endocrinol 59(3):205–212

    Article  PubMed  CAS  Google Scholar 

  • Morgan EH, Smith GD, Peters TJ (1986) Uptake and subcellular processing of 59Fe-125I-labelled transferrin by rat liver. Biochem J 237(1):163–173

    PubMed  CAS  Google Scholar 

  • Pawan K, Neeraj S, Sandeep K, Kanta Ratho R, Rajendra P (2007) Upregulation of Slc39a10 gene expression in response to thyroid hormones in intestine and kidney. Biochim Biophys Acta 1769(2):117–123

    PubMed  CAS  Google Scholar 

  • Pinilla-Tenas JJ, Sparkman BK, Shawki A, Illing AC, Mitchell CJ, Zhao N, Liuzzi JP, Cousins RJ, Knutson MD, Mackenzie B (2011) Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. Am J Physiol Cell Physiol. doi:10.1152/ajpcell.00479.2010

  • Ramm GA, Ruddell RG (2010) Iron homeostasis, hepatocellular injury, and fibrogenesis in hemochromatosis: the role of inflammation in a noninflammatory liver disease. Semin Liver Dis 30(3):271–287

    Article  PubMed  CAS  Google Scholar 

  • Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951

    PubMed  CAS  Google Scholar 

  • Taylor KM (2008) A distinct role in breast cancer for two LIV-1 family zinc transporters. Biochem Soc Trans 36(Pt 6):1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Taylor KM, Nicholson RI (2003) The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophys Acta 1611(1–2):16–30

    PubMed  CAS  Google Scholar 

  • Taylor KM, Morgan HE, Johnson A, Hadley LJ, Nicholson RI (2003) Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. Biochem J 375:51–59

    Google Scholar 

  • Taylor KM, Morgan HE, Johnson A, Nicholson RI (2004) Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. Biochem J 377(Pt 1):131–139

    Article  PubMed  CAS  Google Scholar 

  • Taylor KM, Morgan HE, Smart K, Zahari NM, Pumford S, Ellis IO, Robertson JF, Nicholson RI (2007) The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol Med 13(7–8):396–406

    PubMed  CAS  Google Scholar 

  • Taylor KM, Vichova P, Jordan N, Hiscox S, Hendley R, Nicholson RI (2008) ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer Cells. Endocrinology 149(10):4912–4920

    Article  PubMed  CAS  Google Scholar 

  • Torrance JD, Bothwell TH (1968) A simple technique for measuring storage iron concentrations in formalinised liver samples. S Afr J Med Sci 33(1):9–11

    PubMed  CAS  Google Scholar 

  • Unno J, Satoh K, Hirota M, Kanno A, Hamada S, Ito H, Masamune A, Tsukamoto N, Motoi F, Egawa S, Unno M, Horii A, Shimosegawa T (2009) LIV-1 enhances the aggressive phenotype through the induction of epithelial to mesenchymal transition in human pancreatic carcinoma cells. Int J Oncol 35(4):813–821

    PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed  Google Scholar 

  • Vayenas DV, Repanti M, Vassilopoulos A, Papanastasiou DA (1998) Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain. Int J Clin Lab Res 28(3):183–186

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Dufner-Beattie J, Kim BE, Petris MJ, Andrews G, Eide DJ (2004a) Zinc-stimulated endocytosis controls activity of the mouse ZIP1 and ZIP3 zinc uptake transporters. J Biol Chem 279(23):24631–24639

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Kim BE, Petris MJ, Eide DJ (2004b) The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. J Biol Chem 279(49):51433–51441

    Article  PubMed  CAS  Google Scholar 

  • Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS, Hirano T (2004) Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature 429(6989):298–302

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li B, Chen C, Gao Z (2009) Hepatic distribution of iron, copper, zinc and cadmium-containing proteins in normal and iron overload mice. Biometals 22(2):251–259

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Eide D (1996) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA 93(6):2454–2458

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Chen W, Taylor KM, Cai B, Li X (2007) LIV-1 suppression inhibits HeLa cell invasion by targeting ERK1/2-Snail/Slug pathway. Biochem Biophys Res Commun 363(1):82–88

    Article  PubMed  CAS  Google Scholar 

  • Zhao N, Gao J, Enns CA, Knutson MD (2010) ZRT/IRT-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin. J Biol Chem 285(42):32141–32150

    Article  PubMed  CAS  Google Scholar 

  • Zhau HE, Odero-Marah V, Lue HW, Nomura T, Wang R, Chu G, Liu ZR, Zhou BP, Huang WC, Chung LW (2008) Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clin Exp Metastasis 25(6):601–610

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by National Institutes of Health Grant R01 DK080706.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell D. Knutson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, H., Knutson, M.D. Effect of dietary iron deficiency and overload on the expression of ZIP metal-ion transporters in rat liver. Biometals 25, 115–124 (2012). https://doi.org/10.1007/s10534-011-9487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9487-5

Keywords

Navigation