Skip to main content
Log in

The metal-coordinated Casiopeína IIIEa induces the petite-like phenotype in Saccharomyces cerevisiae

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The Casiopeínas® are mixed chelate copper (II) complexes and promising antineoplastics agents against cancer cells and tumors in vitro and in vivo. However, the action mode of these compounds is poorly characterized. In this work the effect of the antineoplastic Casiopeína IIIEa on the metabolism and ultrastructure of the yeast Saccharomyces cerevisiae was investigated. Exposure of cells growing in rich or in low-iron medium to 5 μM of the compound decreased duplication time and reduced oxygen consumption. Those cells formed smaller colonies when growing in a non-fermentable carbon source and low-iron medium, and under the light microscope, multiple folds were observed along the plasma membrane accompanied with a reduction in the diameter of the yeast. These observations were confirmed under the electron microscope, which also revealed a slight reduction of the mitochondrial size. A correlation was found with smaller colonies exhibiting lower rates of oxygen consumption, and yeast labelled with fluorescent MitoTrackerTM consistently exhibited reduced mitochondrial activity. It appears that Casiopeína IIIEa gives rise to smaller yeast and petite-like colonies by reducing the mitochondrial respiratory activity without significantly affecting the mitochondrial structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alemón-Medina R, Breña-Valle M, Muñoz-Sánchez JL, Gracia-Mora MI, Ruiz-Azuara L (2007) Induction of oxidative damage by Copper-based antineoplastic drugs (Casiopeínas®). Cancer Chemother Pharmacol 60:219–228

    Article  PubMed  Google Scholar 

  • Alemón-Medina R, Bravo-Gómez ME, Gracia-Mora I, Ruiz-Azuara L (2011) Comparison between the antiproliferative effect and intracellular glutathione depletion induced by Casiopeína IIgly and cisplatin in murine melanoma B16 cells. Toxicol Vitro 25:868–873

    Article  Google Scholar 

  • Ammar H, Michaelis G, Lisowsky T (2000) A screen of yeast respiratory mutants for sensitivity against the mycotoxin citrinin identifies the vacuolar ATPase as an essential factor for the toxicity mechanism. Curr Genet 37:277–284

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA et al (1997) Current protocols in molecular biology. Greene Pub, Associates and Wiley-Interscience, Wiley, New York. pp 1434–1438

  • Bernardi G (2005) Lessons from a small, dispensable genome: the mitochondrial genome of yeast. Gene 354:189–200

    Article  PubMed  CAS  Google Scholar 

  • Bravo-Gómez ME, García-Ramos JC, Gracia-Mora I, Ruiz-Azuara L (2009) Antiproliferative activity and QSAR study of copper(II) mixed chelate [Cu(N–N)(acetylacetonato)]NO3 and [Cu(N–N)(glycinato)]NO3 complexes,(Casiopeínas®). J Inorg Biochem 103:299–309

    Article  PubMed  Google Scholar 

  • Carvallo-Chaigneau F, Trejo-Solís C, Gómez-Ruiz C, Rodríguez-Aguilera E, Macías-Rosales L, Cortés-Barberena E, Cedillo-Peláez C, Gracia-Mora I, Ruiz-Azuara L, Madrid-Marina V, Constantino-Casas F (2008) Casiopeina III-ia induces apoptosis in HCT-15 cells in vitro through caspase-dependent mechanisms and has antitumor effect in vivo. Biometals 21:17–28

    Article  PubMed  CAS  Google Scholar 

  • Chen OS, Kaplan J (2000) CCC1 suppresses mitochondrial damage in the yeast model of Friedreich’s ataxia by limiting mitochondrial iron accumulation. J Biol Chem 275:7626–7632

    Google Scholar 

  • De Vizcaya-Ruiz A, Rivero-Muller A, Ruiz-Ramirez L, Kass GE, Kelland LR, Orr RM, Dobrota M (2000) Induction of apoptosis by a novel copper-based anticancer compound, Casiopeina II, in L1210 murine leukaemia and CH1 human ovarian carcinoma cells. Toxicol Vitro 14:1–5

    Article  Google Scholar 

  • Diala ES, Evanss TH, Wilkie D (1980) Primary antimitochondrial activity of the cancer drug methylglyoxal bis(guanylhydrazone) in yeast cells. J General Microbiol 119:35–40

    CAS  Google Scholar 

  • Ferguson LR, Turner PM (1988) ‘Petite’ mutagenesis by anticancer drugs in Saccharomyces cerevisiae. Eur J Ca Clin Oncol 24:591–596

    Article  CAS  Google Scholar 

  • Gaxiola RA, Yuan DS, Klausner RD, Fink GR (1998) The yeast CLC chloride channel functions in cation homeostasis. Proc Natl Acad Sci USA 95:4046–4050

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485

    Article  PubMed  CAS  Google Scholar 

  • Greene JR, Brown NH, DiDomenico BJ, Kaplan J, Eide DJ (1993) The GEF1 gene of Saccharomyces cerevisiae encodes an integral membrane protein; mutations in which have effects on respiration and iron-limited growth. Mol Gen Genet 241:542–553

    Article  PubMed  CAS  Google Scholar 

  • Hannan MA, Zimmer SG, Hazle J (1984) Mechanisms of cisplatin (cis-diamminodichloroplatinum II)-induced cytotoxicity and genotoxicity in yeast. Mutat Res 127:23–30

    Article  PubMed  CAS  Google Scholar 

  • Hayat MA (1982) Principles and techniques of electron microscopy. In: Biological applications, 2nd ed, vol. 1. University Park Press, Baltimore. pp 301–353

  • Hernández-Munoz R, Diaz-Munoz M, Chagoya de Sanchez V (1992) Effects of adenosine administration on the function and membrane composition of liver mitochondria in carbon tetrachloride-induced cirrhosis. Arch Biochem Biophys 294:160–167

    Article  PubMed  Google Scholar 

  • Hogeboom GH, Schneider WC (1950) Cytochemical studies of mammalian tissues. III. Isocitric dehydrogenase and triphosphopyridine nucleotide-cytochrome c reductase of mouse liver. J Biol Chem 186:417–427

    PubMed  CAS  Google Scholar 

  • Kristen R, Schneider-Berlin, Bonilla TD, Rowe TC (2005) Induction of petite mutants in yeast Saccharomyces cerevisiae by the anticancer drug dequalinium. Mutat Res/Fundam Mol Mech Mutagenesis 572:84–97

    Article  Google Scholar 

  • López-Rodríguez A, Trejo AC, Coyne L, Halliwell RF, Miledi R, Martínez-Torres A (2007) The product of the gene GEF1 of Saccharomyces cerevisiae transports Cl- across the plasma membrane. FEMS Yeast Res 7:1218–1229

    Article  PubMed  Google Scholar 

  • Marín-Hernández A, Gracia-Mora I, Ruiz-Ramírez L, Moreno-Sánchez R (2003) Toxic effects of copper-based antineoplastic drugs (Casiopeinas) on mitochondrial functions. Biochem Pharmacol 65:1979–1989

    Article  PubMed  Google Scholar 

  • Martínez-Muñoz GA, Peña A (2005) In situ study of K+ transport into the vacuole of Saccharomyces cerevisiae. Yeast 22:689–704

    Article  PubMed  Google Scholar 

  • Mejia C, Ruiz-Azuara L (2008) Casiopeinas IIgly and IIIia induce apoptosis in medulloblastoma cells. Pathol Oncol Res 14:467–472

    Article  PubMed  Google Scholar 

  • Menacho-Márquez M, Murguía JR (2007) Yeast on drugs: Saccharomyces cerevisiae as a tool for anticancer drug research. Transl Oncol 4:221–228

    Article  Google Scholar 

  • Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Marín-Hernández A, Ruiz-Azuara L, Moreno-Sánchez R (2006) Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Toxicol Appl Pharmacol 215:208–217

    Article  PubMed  Google Scholar 

  • Trejo-Solís C, Palencia G, Zúñiga S, Rodríguez-Ropon A, Osorio-Rico L, Luvia ST, Gracia-Mora I, Marquez-Rosado L, Sánchez A, Moreno-García ME, Cruz A, Bravo-Gómez ME, Ruiz-Ramírez L, Rodríguez-Enriquez S, Sotelo J (2005) Cas IIgly induces apoptosis in glioma C6 cells in vitro and in vivo through caspase-dependent and caspase-independent mechanisms. Neoplasia 7:563–574

    Article  PubMed  Google Scholar 

  • Ruiz-Azuara L (1996) United States Patent 5(576):326

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CONACYT 101851 (M-T, A.), CONACYT-REDES 87806 and PICSA10-61 (R-A, L. and M, C.) México. We thank Ruiz-Alcíbar E. for his technical support and Ma Elena Bravo–Gómez for the synthesis of Cas IIIEa. R. Gaxiola (Arizona State University) kindly donated yeast strains.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angélica López-Rodríguez or Ataúlfo Martínez-Torres.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10534_2011_9477_MOESM1_ESM.ppt

Oxymetric record showing the effect of Cas IIIEa in pre-incubated yeast. Yeast was pre-incubated for 2 h in 100 mM of Cas IIIEa and glucose (10 mM). In 20 × 106 cells, oxygen consumption was 88.2 nAtO/min and decreased to 26.46 nAtO/min after adding 100 mM of Cas IIIEa. Addition of sodium dithionite crystals reduced remaining O2. (PPT 78 kb)

10534_2011_9477_MOESM2_ESM.ppt

Effect of Cas IIIEa in spheroplasts. Over spheroplast preparation (according to Martínez-Muñoz and Peña 2005) using glutamate and malate 10 mM as substrate oxygen consumption was 8 nAt O/min. An increase in respiration (16.8 and 132 nAt O) was evidenced after adding FCCP 3 nM and Cas IIIEa (100 mM) respectively. In order to discard the site I we added 1 mg/ml of rotenone showing that it was insensible (130.67 nAt O). Addition of sodium dithionite crystals reduced remaining O2. (PPT 61 kb)

10534_2011_9477_MOESM3_ESM.ppt

Effect of Cas IIIEa on oxygen consumption rate in isolated liver rat mitochondria. The basal oxygen consumption using glutamate and malate 10 mM was 26.41 nAtO/min, after adding ADP 20 mM (107.8 nAt O) afterward Cas IIIEa (100 mM) addition (112.7 nAtO/min) first 1.5 min and then a reduction was observed (42.14 nAt O) and adding different substrates as succinate 10 mM (27.44 nAt O) and FCCP 3 nM (19.6 nAt O) respiratory activity continue decreasing. (PPT 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Rodríguez, A., Cárabez-Trejo, A., Rosas-Sánchez, F. et al. The metal-coordinated Casiopeína IIIEa induces the petite-like phenotype in Saccharomyces cerevisiae . Biometals 24, 1189–1196 (2011). https://doi.org/10.1007/s10534-011-9477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9477-7

Keywords

Navigation