Skip to main content
Log in

Potential of lithium to reduce aluminium-induced cytotoxic effects in rat brain

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The present study was aimed to explore the potential of an antidepressant drug lithium (Li) in reducing aluminium (Al) induced neurotoxicity. To carry out the investigations, Al was administered orally (100 mg AlCl3/Kg b wt/day) whereas, Li was administered through diet (1.1 g Li2CO3/Kg diet, daily) for a total duration of 2 months. Al treatment resulted in a significant increase in the activity of enzyme nitric oxide synthase and the levels of l-citrulline which, however, were decreased appreciably following lithium supplementation. Al treatment also revealed an increase in DNA fragmentation as evidenced by an increase in number of comets. Interestingly, Li supplementation to Al treated rats reduced the damage inflicted on DNA by Al. Ultrastructural studies revealed an increase in chromatin condensation with discontinuity in nuclear membrane in both the cerebrum and cerebellum of Al treated rats which showed improvement following Li supplementation. Alterations in the structure of synapse and mitochondrial swelling were also seen. The present study shows the potential of Li in containing the damage inflicted by Al on rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aghdam Y, Barger S, Steven W (2007) Glycogen synthase kinase-3 in neurodegeneration and neuroprotection: lessons from lithium. Curr Alzheimer Res 4(1):21–31 (11)

    Article  CAS  PubMed  Google Scholar 

  • Amador FC, Santos MS, Oliveira CR (2001) Lipid peroxidation and aluminium effects on the cholinergic system in nerve terminals. Neurotox Res 3(3):223–233

    Article  CAS  PubMed  Google Scholar 

  • Azzaoui FZ, Ahami AO, Khadmaoui A (2008) Impact of aluminum sub-chronic toxicity on body weight and recognition memory of wistar rat. Pak J Biol Sci 11(14):1830–1834

    Article  CAS  PubMed  Google Scholar 

  • Baydar T, Papp A, Aydin A, Nagymajtenyi L, Schulz H, Isimer A, Sahin G (2003) Accumulation of aluminum in rat brain: does it lead to behavioral and electrophysiological changes? Biol Trace Elem Res 92(3):231–244

    Article  CAS  PubMed  Google Scholar 

  • Becaria A, Campbell A, Bondy SC (2002) Aluminum as a toxicant. Toxicol Ind Health 18(7):309–320

    Article  CAS  PubMed  Google Scholar 

  • Bhalla P, Dhawan DK (2009) Protective role of lithium in ameliorating the aluminium-induced oxidative stress and histological changes in rat brain. Cell Mol Neurobiol 29(4):513–521

    Article  CAS  PubMed  Google Scholar 

  • Bhalla P, Nair P, Garg ML, Dhawan DK (2009) Effects of lithium on membrane fluidity and lipid profile in brain membranes of aluminium treated rats. Toxicol Environ Chem 1029-0486 91(4):723–733

    Article  CAS  Google Scholar 

  • Bondy SC, Kirstein S (1996) The promotion of iron-induced generation of reactive oxygen species in nerve tissue by aluminium. Mol Chem Neuropathol 27:185–194

    Article  CAS  PubMed  Google Scholar 

  • Bondy SC, Liu D, Guo-Ross S (1998) Aluminum treatment induces nitric oxide synthase in the rat brain. Neurochem Int 33:51–54

    Article  CAS  PubMed  Google Scholar 

  • Boyde TRC, Rahmatullah M (1980) Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Analytical Biochem J 107:424–431

    Article  CAS  Google Scholar 

  • Brenner S (2002) Aluminum neurotoxicity is reduced by dantrolene and dimethyl sulfoxide in cultured rat hippocampal neurons. Biol Trace Elem Res 86(1):85–89

    Article  CAS  PubMed  Google Scholar 

  • Canolty NL, Johnson MA (1987) Effects of increasing dietary lithium carbonate on weight and mineral contents of tissues from weanling rats. Fed Proc 46:906

    Google Scholar 

  • Chinje EC, Startford IJ (1997) Role of nitric oxide in growth of solid tumors: a balancing act. Essays Biochem 32:61–72

    CAS  PubMed  Google Scholar 

  • Cordeiro JM, Silva VS, Oliveira CR, Gonçalves PP (2003) Aluminium-induced impairment of Ca2+ modulatory action on GABA transport in brain cortex nerve terminals. J Inorg Biochem 15, 97(1):132–142

    Google Scholar 

  • Esplugues JV (2002) NO as a signalling molecule in the nervous system. Br J Pharmacol 135(5):1079–1095

    Article  CAS  PubMed  Google Scholar 

  • Estévez AG, Radi R, Barbeito L, Shin JT, Thompson JA, Beckman JS (1995) Peroxynitrite-induced cytotoxicity in PC12 cells: evidence for an apoptotic mechanism differentially modulated by neurotrophic factors. J Neurochem 65(4):1543–1550

    Article  PubMed  Google Scholar 

  • Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 14(2):60–67

    Article  CAS  PubMed  Google Scholar 

  • Geoffroy M, Tvede K, Christensen AV, Schou JS (1991) The effect of impramine and lithium on “learned helplessness and acetylcholinestsrase in rat brain”. Pharmacol Biochem Behav 38(1):93–97

    Article  CAS  PubMed  Google Scholar 

  • Ghribi O, Herman MM, Spaulding NK, Savory J (2002) Lithium inhibits aluminum-induced apoptosis in rabbit hippocampus, by preventing cytochrome c translocation, Bcl-2 decrease, Bax elevation and caspase-3 activation. J Neurochem 82(1):137–145

    Article  CAS  PubMed  Google Scholar 

  • Gong QH, Wu Q, Huang XN, Sun AS, Shi JS (2005) Protective effects of Ginkgo biloba leaf extract on aluminum-induced brain dysfunction in rats. Life Sci 77(2):140–148

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW, Stuehr DJ (1995) Nitric oxide synthetase: Properties and catalytic mechanism. Ann Rev Physiol 57:707–736

    Article  CAS  Google Scholar 

  • Gupta VB, Anitha S, Hegde ML, Zecca L, Garruto RM, Ravid R, Shankar SK, Stein R, Shanmugavelu P, Jagannatha Rao KS (2005) Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell Mol Life Sci 62(2):143–158

    Article  CAS  PubMed  Google Scholar 

  • Hänninen H, Matikainen E, Kovala T, Valkonen S, Riihimäki V (1994) Internal load of aluminum and the central nervous system function of aluminum welders. Scand J Work Environ Health 20(4):279–285

    PubMed  Google Scholar 

  • Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197

    Article  CAS  PubMed  Google Scholar 

  • Jyoti A, Sethi P, Sharma D (2007) Bacopa monniera prevents from aluminium neurotoxicity in the cerebral cortex of rat brain. J Ethnopharmacol 111(1):56–62

    Article  PubMed  Google Scholar 

  • Kaizer RR, Corrêa MC, Spanevello RM, Morsch VM, Mazzanti CM, Gonçalves JF, Schetinger MR (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions J. Inorg Biochem 99(9):1865–1870

    Article  CAS  Google Scholar 

  • Kaur A, Gill KD (2005) Disruption of neuronal calcium homeostasis after chronic aluminium toxicity in rats. Basic Clin Pharmacol Toxicol 96(2):118–122

    Article  CAS  PubMed  Google Scholar 

  • Lai JS, Zhao C, Warsh JJ, Li PP ( 2006) Cytoprotection by lithium and valproate varies between cell types and cellular stresses. Eur J Pharmacol 539 (1–2):18–26

    Article  CAS  PubMed  Google Scholar 

  • Lane P, Hao G, Gross SS (2001) S-nitrosylation is emerging as a specic and fundamental posttranslational protein modication: head to head comparison with O-phosphorylation. Sci SKTE 86:1–9

    Google Scholar 

  • Li X, Bijur GN, Jope RS (2002) Glycogen synthase kinase-3β, mood stabilizers, and neuroprotection. Bipolar Disord 4:137–144

    Article  CAS  PubMed  Google Scholar 

  • Lima PDL, Leite DS, Vasconcellos MC, Cavalcanti BC, Santos RA, Costa-Lotufo LA, Pessoa C, Moraes MO, Burbano RR (2007) Genotoxic effects of aluminum chloride in cultured human lymphocytes treated in different phases of cell cycle. Food Chem Toxicol 45:1154–1159

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364(6438):626–632

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Ranell RJ (1951) Protein measurements with the Follin’s phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Luo Y, Nie J, Gong QH, Lu YF, Wu Q, Shi JS (2007) Protective effects of icariin against learning and memory deficits induced by aluminium in rats. Clin Exp Pharmacol Physiol 34(8):792–795

    Article  CAS  PubMed  Google Scholar 

  • Nehru B, Bhalla P, Garg A (2007) Further evidence of centrophenoxine mediated protection in aluminium exposed rats by biochemical and light microscopy analysis. Food Chem Toxicol 45(12):2499–2505

    Article  CAS  PubMed  Google Scholar 

  • Ochmanski W, Barabasz W (2000) Aluminium-occurance and toxicity for organisms. Przegl Lek 57:665–668

    CAS  PubMed  Google Scholar 

  • Ondreicka R, Ginter E, Kortus J (1996) Chronic toxicity of aluminium in rats and mice and its effects on phosphorous metabolism. Br J Ind Med 23:305–312

    Google Scholar 

  • Pan R, Qiu S, Lu DX, Dong J (2008) Curcumin improves learning and memory ability and its neuroprotective mechanism in mice. Chin Med J (Engl) 121(9):832–839

    CAS  Google Scholar 

  • Raddassi K, Berthon B, Petit JF, Lemaire G (1994) Role of calcium in the activation of mouse peritoneal macrophages: induction of NO synthase by calcium ionophores and thapsigargin. Cell Immunol 53:443–455

    Article  Google Scholar 

  • Reinke CM, Breitkreutz J, Leuenberger H (2003) Aluminium in over-the-counter drugs: risks outweigh benefits? Drug Saf 26(14):1011–1025

    Article  CAS  PubMed  Google Scholar 

  • Rifat SL, Eastwood MR, McLachlan DR, Corey PN (1990) Effect of exposure of miners to aluminium powder. Lancet 336(8724):1162–1165

    Article  CAS  PubMed  Google Scholar 

  • Santibáñez M, Bolumar F, García AM (2007) Occupational risk factors in Alzheimer’s disease: a review assessing the quality of published epidemiological studies. Occup Environ Med 64(11):723–732

    Article  PubMed  Google Scholar 

  • Satoh E, Yasuda I, Yamada T, Suzuki Y, Ohyashiki T (2007) Involvement of NO Generation in Aluminum-Induced Cell Death Biol. Pharm Bull 30(8):1390–1394

    Article  CAS  Google Scholar 

  • Schafer M, Goodenough S, Moosmann B, Behl C (2004) Inhibition of glycogen synthase kinase 3 beta is involved in the resistance to oxidative stress in neuronal HT22 cells. Brain Res 1005:84–89

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HH, Walter U (1994) NO at work. Cell 78:919–925

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Young LT, Wang JF (2005) Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells, Biol. Psychiatry 58:879–884

    CAS  Google Scholar 

  • Singh NP, Mccoy MT, Tice RR, Schneider ELA (1988) Single technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17(8):2653–2657

    CAS  PubMed  Google Scholar 

  • Smith MA, Vasák M, Knipp M, Castellani RJ, Perry G (1998) Dimethylargininase, a nitric oxide regulatory protein, in Alzheimer disease. Free Radic Biol Med 25(8):898–902

    Article  CAS  PubMed  Google Scholar 

  • Solfrizzi V, Colacicco AM, D’Introno A, Capurso C, Parigi AD, Capurso SA, Torres F, Capurso A, Panza F (2006) Macronutrients, aluminium from drinking water and foods, and other metals in cognitive decline and dementia. J Alzheimers Dis. 10(2–3):303–330

    PubMed  Google Scholar 

  • Suárez-Fernández MB, Soldado AB, Sanz-Medel A, Vega JA, Novelli A, Fernández-Sánchez MT (1999) Aluminum-induced degeneration of astrocytes occurs via apoptosis and results in neuronal death. Brain Res 835(2):125–136

    Article  PubMed  Google Scholar 

  • Suwalsky M, Ungerer B, Villena F, Norris B, Cardenas H, Zatta P (2001) Effects of AlCl3 on toad skin, human erythrocytes, and model cell membranes. Brain Res Bull 55:205–210

    Article  CAS  PubMed  Google Scholar 

  • Synzynys BI, Sharetskii AN, Kharlamova OV (2004) Immunotoxicity of aluminum chloride. Gig Sanit 4:70–72

    PubMed  Google Scholar 

  • Tandon A, Dhawan DK, Nagpaul JP (1998) Effect of lithium on hepatic lipid peroxidation and antioxidative enzymes under different dietary protein regimens. J Appl Toxicol 18:187–190

    Article  CAS  PubMed  Google Scholar 

  • Tandon A, Bhalla P, Nagpaul JP, Dhawan DK (2006) Effect of lithium on rat cerebrum under different dietary protein regimens. Drug Chem Toxicol 29:333–344

    Article  CAS  PubMed  Google Scholar 

  • Varella SD, Pozetti GL, Vilegas W, Varanda EA (2004) Mutagenic activity in waste from an aluminum products factory in Salmonella/microsome assay. Toxicol In Vitro 18:895–900

    Article  CAS  PubMed  Google Scholar 

  • Wyllie AH (1993) Apoptosis (The 1992 Frank Rose memorial lecture). Br J Cancer 67:205–208

    CAS  PubMed  Google Scholar 

  • Yuan P, Gould TD, Gray NA, Bachmann RF, Schloesser RJ, Lan MJK, Du J, Moore GJ, Manji HK (2004) Neurotrophic signaling cascades are major long-term targets for lithium: clinical implications. Clin Neurosci Res 4:137–153

    Article  CAS  Google Scholar 

  • Zumkley H, Bertram HP, Lison A, Knoll O, Losse H (1979) Al, Zn and Cu concentrations in plasma in chronic renal insufficiency. Clin Nephrol 12:18–21

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The work was supported by the Department of Biophysics, Panjab University, Chandigarh, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Dhawan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhalla, P., Singla, N. & Dhawan, D.K. Potential of lithium to reduce aluminium-induced cytotoxic effects in rat brain. Biometals 23, 197–206 (2010). https://doi.org/10.1007/s10534-009-9278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9278-4

Keywords

Navigation